Home
Class 12
MATHS
If y=tan^(-1) ((cos x)/(1-sin x)),"then ...

If `y=tan^(-1) ((cos x)/(1-sin x)),"then " dy/dx=`

A

`(-3)/(2)`

B

`(3)/(2)`

C

`(-1)/(2)`

D

`(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \tan^{-1} \left( \frac{\cos x}{1 - \sin x} \right) \), we will use the chain rule and the quotient rule. Here’s a step-by-step solution: ### Step 1: Differentiate \( y \) using the chain rule The derivative of \( y = \tan^{-1}(u) \) is given by: \[ \frac{dy}{dx} = \frac{1}{1 + u^2} \cdot \frac{du}{dx} \] where \( u = \frac{\cos x}{1 - \sin x} \). ### Step 2: Find \( u^2 \) First, we need to compute \( u^2 \): \[ u^2 = \left( \frac{\cos x}{1 - \sin x} \right)^2 = \frac{\cos^2 x}{(1 - \sin x)^2} \] ### Step 3: Substitute \( u^2 \) into the derivative formula Now, substituting \( u^2 \) into the derivative formula: \[ \frac{dy}{dx} = \frac{1}{1 + \frac{\cos^2 x}{(1 - \sin x)^2}} \cdot \frac{du}{dx} \] ### Step 4: Simplify the expression To simplify \( 1 + u^2 \): \[ 1 + u^2 = 1 + \frac{\cos^2 x}{(1 - \sin x)^2} = \frac{(1 - \sin x)^2 + \cos^2 x}{(1 - \sin x)^2} \] Using the identity \( \sin^2 x + \cos^2 x = 1 \): \[ (1 - \sin x)^2 + \cos^2 x = 1 - 2\sin x + \sin^2 x + \cos^2 x = 1 - 2\sin x + 1 = 2 - 2\sin x \] Thus, \[ 1 + u^2 = \frac{2(1 - \sin x)}{(1 - \sin x)^2} \] ### Step 5: Differentiate \( u \) using the quotient rule Now we need to differentiate \( u \): \[ u = \frac{\cos x}{1 - \sin x} \] Using the quotient rule: \[ \frac{du}{dx} = \frac{(1 - \sin x)(-\sin x) - \cos x(-\cos x)}{(1 - \sin x)^2} \] This simplifies to: \[ \frac{du}{dx} = \frac{-\sin x + \cos^2 x + \sin x \cos x}{(1 - \sin x)^2} = \frac{\cos^2 x + \sin x \cos x}{(1 - \sin x)^2} \] ### Step 6: Substitute \( \frac{du}{dx} \) back into the derivative formula Now substituting \( \frac{du}{dx} \) back into the derivative: \[ \frac{dy}{dx} = \frac{1}{\frac{2(1 - \sin x)}{(1 - \sin x)^2}} \cdot \frac{\cos^2 x + \sin x \cos x}{(1 - \sin x)^2} \] This simplifies to: \[ \frac{dy}{dx} = \frac{(1 - \sin x)^2}{2(1 - \sin x)} \cdot \frac{\cos^2 x + \sin x \cos x}{(1 - \sin x)^2} \] Canceling \( (1 - \sin x)^2 \): \[ \frac{dy}{dx} = \frac{\cos^2 x + \sin x \cos x}{2(1 - \sin x)} \] ### Final Step: Simplify the expression Using the identity \( \cos^2 x + \sin^2 x = 1 \): \[ \frac{dy}{dx} = \frac{1 - \sin^2 x + \sin x \cos x}{2(1 - \sin x)} = \frac{1 - \sin x}{2(1 - \sin x)} = \frac{1}{2} \] Thus, the final answer is: \[ \frac{dy}{dx} = \frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y=tan^(-1) ((sin x)/(1-cos x)),"then " dy/dx=

If y=tan^(-1) ((1-sin x)/(cos x)),"then " dy/dx=

If y=tan^(-1)((1+cos x)/(sin x)),then(dy)/(dx)=

If y=tan^(-1)((cos x)/(1+sin x)), find (dy)/(dx)

If y = tan^(-1) ((1 - cos x)/(sin x)) " then "(dy)/(dx)= ?

If y=tan^(-1)((1-cos3x)/(sin3x)) , then (dy)/(dx)= . . .

If y = tan^(-1){(cos x)/(1 + sinx)} " then " (dy)/(dx) = ?

If y=tan^(-1) sqrt((1-sin 4x)/(1+sin 4x)),"then " dy/dx=

If y = log ((cos x)/(1 - sin x)), "then " (dy)/(dx) is equal to

y = tan ^ (- 1) ((1-cos x) / (sin x)) then (dy) / (dx)

NIKITA PUBLICATION-DIFFERENTIATION -MCQ
  1. If y = tan^(-1)((cos x)/(1 + sin x)), "then" (dy)/(dx) is equal to

    Text Solution

    |

  2. If y=tan^(-1) ((1-sin x)/(cos x)),"then " dy/dx=

    Text Solution

    |

  3. If y=tan^(-1) ((cos x)/(1-sin x)),"then " dy/dx=

    Text Solution

    |

  4. If y=tan^(- 1)sqrt((1-cosx)/(1+cosx)), prove that (dy)/(dx)=1/2.

    Text Solution

    |

  5. If y=tan^(-1) sqrt((1+cos ((x)/(2)))/(1-cos ((x)/(2))),"then " dy/dx=

    Text Solution

    |

  6. If y=tan^(-1) ("cosec x"-cot x),"then " dy/dx=

    Text Solution

    |

  7. If y = tan^(-1) (sec x + tan x) " then " (dy)/(dx)= ?

    Text Solution

    |

  8. If y=cot^(-1) ("cosec x"+cot x),"then " dy/dx=

    Text Solution

    |

  9. If y = tan^(-1) (sec x + tan x) " then " (dy)/(dx)= ?

    Text Solution

    |

  10. If y=tan^(-1) sqrt((1-sin 4x)/(1+sin 4x)),"then " dy/dx=

    Text Solution

    |

  11. Ify=tan^(- 1)(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)) f...

    Text Solution

    |

  12. If y=tan^(-1)((sinx+cosx)/(cosx-sinx)) , then (dy)/(dx) is equal to 1/...

    Text Solution

    |

  13. If y= sin ^(-1) ((cos x +sin x)/( sqrt2)) ,then (dy)/(dx)=

    Text Solution

    |

  14. If y=sin ^(-1) ((asin x +bcos x )/( sqrt(a^(2) +b^(2)))) ,then (dy)/(...

    Text Solution

    |

  15. If y= sin ^(-1) ((4cos x +5sin x )/( sqrt(41))) ,then (dy)/(dx)=

    Text Solution

    |

  16. If y=cos ^(-1) ((cos x+ sin x )/(sqrt( 2))),then (dy)/(dx)=

    Text Solution

    |

  17. If y= cos ^(-1)((sqrt 3cos x+ sin x )/( 2 )) ,then (dy)/(dx) =

    Text Solution

    |

  18. If y=cos ^(-1) ((3cos x-2sin x )/( sqrt(13))),then (dy)/(dx)=

    Text Solution

    |

  19. If y=cos ^(-1) ((3sin x +4cos x)/( 5)),then (dy)/(dx) =

    Text Solution

    |

  20. If y=cos ^(-1) ((3cos x-4sin x )/( 5) ) ,then (dy)/(dx)=

    Text Solution

    |