Home
Class 12
MATHS
If y=cot^(-1) ("cosec x"+cot x),"then " ...

If `y=cot^(-1) ("cosec x"+cot x),"then " dy/dx=`

A

`-1`

B

` 1`

C

` (-1)/(2)`

D

` (1)/(2) `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to differentiate the function \( y = \cot^{-1}(\csc x + \cot x) \) with respect to \( x \). Let's go through the steps one by one. ### Step 1: Identify the derivative of \( y \) We start with the formula for the derivative of \( \cot^{-1}(u) \): \[ \frac{dy}{dx} = -\frac{1}{1 + u^2} \cdot \frac{du}{dx} \] where \( u = \csc x + \cot x \). ### Step 2: Differentiate \( u = \csc x + \cot x \) Now we need to find \( \frac{du}{dx} \): - The derivative of \( \csc x \) is \( -\csc x \cot x \). - The derivative of \( \cot x \) is \( -\csc^2 x \). Thus, \[ \frac{du}{dx} = -\csc x \cot x - \csc^2 x \] ### Step 3: Substitute \( u \) and \( \frac{du}{dx} \) into the derivative formula Now we substitute \( u \) and \( \frac{du}{dx} \) back into the derivative formula: \[ \frac{dy}{dx} = -\frac{1}{1 + (\csc x + \cot x)^2} \cdot \left(-\csc x \cot x - \csc^2 x\right) \] This simplifies to: \[ \frac{dy}{dx} = \frac{\csc x \cot x + \csc^2 x}{1 + (\csc x + \cot x)^2} \] ### Step 4: Simplify the denominator Now we need to simplify the denominator: \[ 1 + (\csc x + \cot x)^2 = 1 + (\csc^2 x + 2 \csc x \cot x + \cot^2 x) \] Using the identity \( \csc^2 x - \cot^2 x = 1 \), we can rewrite this as: \[ = \csc^2 x + 2 \csc x \cot x + 1 \] Thus, we have: \[ 1 + \cot^2 x = \csc^2 x \] So, \[ 1 + (\csc x + \cot x)^2 = 2 \csc^2 x + 2 \csc x \cot x \] ### Step 5: Final expression for \( \frac{dy}{dx} \) Now substituting back into our expression for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{\csc x (\cot x + \csc x)}{2 (\csc^2 x + \csc x \cot x)} \] After canceling \( \csc x + \cot x \) from the numerator and denominator, we are left with: \[ \frac{dy}{dx} = \frac{1}{2} \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y=tan^(-1) ("cosec x"-cot x),"then " dy/dx=

cot^(-1)("cosec x"+cotx)

log("cosec x"-cot x)

If y=cot^(-1)((sin x)/(1+cos x)) then (dy)/(dx)=

csc x=1+cot x

If y=cot^(-1) ((1)/(sqrtx)),"then "dy/dx=

If y = cot^(-1) ((1 -x)/(1 +x)) " then " (dy)/(dx) = ?

(d)/(dx) (cosec x+ cot x )=

If y=(cosec x-cot x)/(cosec x+cot x) then (dy)/(dx) is

NIKITA PUBLICATION-DIFFERENTIATION -MCQ
  1. If y=tan^(-1) ("cosec x"-cot x),"then " dy/dx=

    Text Solution

    |

  2. If y = tan^(-1) (sec x + tan x) " then " (dy)/(dx)= ?

    Text Solution

    |

  3. If y=cot^(-1) ("cosec x"+cot x),"then " dy/dx=

    Text Solution

    |

  4. If y = tan^(-1) (sec x + tan x) " then " (dy)/(dx)= ?

    Text Solution

    |

  5. If y=tan^(-1) sqrt((1-sin 4x)/(1+sin 4x)),"then " dy/dx=

    Text Solution

    |

  6. Ify=tan^(- 1)(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)) f...

    Text Solution

    |

  7. If y=tan^(-1)((sinx+cosx)/(cosx-sinx)) , then (dy)/(dx) is equal to 1/...

    Text Solution

    |

  8. If y= sin ^(-1) ((cos x +sin x)/( sqrt2)) ,then (dy)/(dx)=

    Text Solution

    |

  9. If y=sin ^(-1) ((asin x +bcos x )/( sqrt(a^(2) +b^(2)))) ,then (dy)/(...

    Text Solution

    |

  10. If y= sin ^(-1) ((4cos x +5sin x )/( sqrt(41))) ,then (dy)/(dx)=

    Text Solution

    |

  11. If y=cos ^(-1) ((cos x+ sin x )/(sqrt( 2))),then (dy)/(dx)=

    Text Solution

    |

  12. If y= cos ^(-1)((sqrt 3cos x+ sin x )/( 2 )) ,then (dy)/(dx) =

    Text Solution

    |

  13. If y=cos ^(-1) ((3cos x-2sin x )/( sqrt(13))),then (dy)/(dx)=

    Text Solution

    |

  14. If y=cos ^(-1) ((3sin x +4cos x)/( 5)),then (dy)/(dx) =

    Text Solution

    |

  15. If y=cos ^(-1) ((3cos x-4sin x )/( 5) ) ,then (dy)/(dx)=

    Text Solution

    |

  16. If y=sin ^(-1)sqrt (1-x^(2)),then (dy)/(dx)=

    Text Solution

    |

  17. If y=sin ^(-1)(2x sqrt (1-x^(2))),then (dy)/(dx)=

    Text Solution

    |

  18. y=sin ^(-1) (1-2x ^(2)),then (dy)/(dx)=

    Text Solution

    |

  19. If y=sin ^(-1) (2x^(2) -1) ,then (dy)/(dx)=

    Text Solution

    |

  20. If y=sin ^(-1) (4x^(3) -3x) ,then ( dy)/(dx) =

    Text Solution

    |