Home
Class 12
MATHS
If y=sin ^(-1) (xsqrt( 1-x) +sqrt(x) sqr...

If `y=sin ^(-1) (xsqrt( 1-x) +sqrt(x) sqrt (1-x^(2))),then (dy)/(dx)=`

A

` (-2x)/( sqrt(1-x^(2)))+(1)/(2sqrt(x-x^(2)))`

B

` (-1x)/( sqrt(1-x^(2)))+(1)/(2sqrt(x-x^(2)))`

C

` (1x)/( sqrt(1-x^(2)))+(1)/(2sqrt(x-x^(2)))`

D

` (1x)/( sqrt(1-x^(2)))-(1)/(2sqrt(x-x^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to differentiate the function given by: \[ y = \sin^{-1} \left( x \sqrt{1-x} + \sqrt{x} \sqrt{1-x^2} \right) \] ### Step 1: Simplify the expression inside the inverse sine function Let’s denote: - \( x = \sin a \) - \( \sqrt{x} = \sin b \) From these, we have: - \( \sqrt{1-x^2} = \cos a \) - \( \sqrt{1-x} = \cos b \) Substituting these into the expression for \( y \): \[ y = \sin^{-1} \left( \sin a \cos b + \cos a \sin b \right) \] ### Step 2: Use the sine addition formula The expression \( \sin a \cos b + \cos a \sin b \) can be recognized as \( \sin(a + b) \). Thus, we can rewrite \( y \): \[ y = \sin^{-1}(\sin(a + b)) \] ### Step 3: Simplify further Since \( \sin^{-1} \) and \( \sin \) are inverse functions, we have: \[ y = a + b \] ### Step 4: Substitute back for \( a \) and \( b \) Recall that: - \( a = \sin^{-1}(x) \) - \( b = \sin^{-1}(\sqrt{x}) \) Thus, we can express \( y \) as: \[ y = \sin^{-1}(x) + \sin^{-1}(\sqrt{x}) \] ### Step 5: Differentiate \( y \) Now we differentiate \( y \): \[ \frac{dy}{dx} = \frac{d}{dx} \left( \sin^{-1}(x) \right) + \frac{d}{dx} \left( \sin^{-1}(\sqrt{x}) \right) \] Using the derivative of \( \sin^{-1}(u) \), which is \( \frac{1}{\sqrt{1-u^2}} \cdot \frac{du}{dx} \): 1. For \( \sin^{-1}(x) \): \[ \frac{d}{dx} \left( \sin^{-1}(x) \right) = \frac{1}{\sqrt{1-x^2}} \] 2. For \( \sin^{-1}(\sqrt{x}) \): Let \( u = \sqrt{x} \), then \( \frac{du}{dx} = \frac{1}{2\sqrt{x}} \): \[ \frac{d}{dx} \left( \sin^{-1}(\sqrt{x}) \right) = \frac{1}{\sqrt{1-x}} \cdot \frac{1}{2\sqrt{x}} = \frac{1}{2\sqrt{x}\sqrt{1-x}} \] ### Step 6: Combine the derivatives Thus, we have: \[ \frac{dy}{dx} = \frac{1}{\sqrt{1-x^2}} + \frac{1}{2\sqrt{x}\sqrt{1-x}} \] ### Final Result The final expression for \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{1}{\sqrt{1-x^2}} + \frac{1}{2\sqrt{x}\sqrt{1-x}} \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y=sin^(-1)(x sqrt(1-x)+sqrt(x)sqrt(1-x^(2))) and (dy)/(dx)=(1)/(2sqrt(x(1-x)))+p, then p,

If y=tan^(-1)[(x-sqrt(1-x^(2)))/(x+sqrt(1-x^(2)))]," then "(dy)/(dx)=

If y=sin ^(-1)sqrt (1-x^(2)),then (dy)/(dx)=

If y=sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))) and 0

If y= sqrt(x-1) +sqrt( x+1) ,then (dy)/(dx)

y = sin^(-1) {(sqrt(1 +x) + sqrt(1 -x))/(2)} " then " (dy)/(dx) = ?

If y= sin ^(-1) ((x)/(1+ sqrt(1- x ^(2)))), |x|le 1, then (dy)/(dx) at ((1)/(2)) is:

If e^(y)=(sqrt(1+x)+sqrt(1-x))/(sqrt(1+x)-sqrt(1-x))," then "(dy)/(dx)=

NIKITA PUBLICATION-DIFFERENTIATION -MCQ
  1. If y=sin ^(-1)((x)/( sqrt(x^(2) +a^(2)))) ,then (dy)/(dx)=

    Text Solution

    |

  2. If y=sin ^(-1) (xcos a+ sqrt( 1-x^(2))sin alpha ) ,then (dy)/(dx) =

    Text Solution

    |

  3. If y=sin ^(-1) (xsqrt( 1-x) +sqrt(x) sqrt (1-x^(2))),then (dy)/(dx)=

    Text Solution

    |

  4. यदि y= sin ^(-1) {(5x+ 12sqrt (1-x^(2)))/(13)} तब (dy)/(dx) का मान ज...

    Text Solution

    |

  5. if y=sin^-1 ((sqrt(1+x)+sqrt(1-x))/2) then (dy)/(dx)

    Text Solution

    |

  6. If y=sin ^(-1) ((3x +4 sqrt(1-x^(2)))/( 5)),then (dy)/(dx)=

    Text Solution

    |

  7. If y={(log)(cosx)sinx}{(log)(sinx)cosx}^(-1)+sin^(-1)((2x)/(1+x^2)),fi...

    Text Solution

    |

  8. If y=sin[2tan^(-1){sqrt((1-x)/(1+x))}],fin d(dy)/(dx)

    Text Solution

    |

  9. If y=sin^2(cot^(- 1)sqrt((1+x)/(1-x))) then(dy)/(dx) is

    Text Solution

    |

  10. If y= cos ^(-1)sqrt (1-x) ,then (dy)/(dx) =

    Text Solution

    |

  11. If y=cos ^(-1) ((log x^(2))/( 1+(log x)^(2))) ,then (dy)/(dx)=

    Text Solution

    |

  12. If y=cos ^(-1) ((1-x^(2))/( 1+x^(2))) ,then (dy)/(dx)=

    Text Solution

    |

  13. If f(x)=cos^(-1)[(1-(logx)^2)/(1+(logx)^2)] , then the value of f'(e) ...

    Text Solution

    |

  14. If y=cos ^(-1) ((x-x^(-1))/( x+x^(-1))) ,then (dy)/(dx)=

    Text Solution

    |

  15. If y=cos ^(-1) ((x^(-1)-x) /(x^(-1) +x)),then (dy)/(dx)=

    Text Solution

    |

  16. If y=cos ^(-1) ((a^(-x) -a^(x))/(a^(-x) +a^(x))) ,then (dy)/(dx) =

    Text Solution

    |

  17. If y=cos ^(-1) sqrt((1+x) /( 2) )then (dy)/(dx)=

    Text Solution

    |

  18. If y =cos ^(-1)(xsin alpha -cos alpha sqrt(1-x^(2))),then (dy)/(dx)=

    Text Solution

    |

  19. If y=cos ^(-1) ((sqrt (1+x) -sqrt (1-x) )/( 2)) ,then (dy)/(dx)=

    Text Solution

    |

  20. Find (dy)/(dx) for the function: y=sin^(-1)sqrt((1-x))+cos^(-1)sqrt(x)

    Text Solution

    |