Home
Class 12
MATHS
If y=sin ^(-1) ((3x +4 sqrt(1-x^(2)))/(...

If ` y=sin ^(-1) ((3x +4 sqrt(1-x^(2)))/( 5)),then (dy)/(dx)=`

A

` (-1)/(sqrt( 1-x^(2)))`

B

` (1)/(sqrt( 1-x^(2)))`

C

` (-2)/(sqrt( 1-x^(2)))`

D

` (2)/(sqrt( 1-x^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) for the function \[ y = \sin^{-1} \left( \frac{3x + 4\sqrt{1 - x^2}}{5} \right), \] we will follow these steps: ### Step 1: Set up the equation We start with the equation given: \[ y = \sin^{-1} \left( \frac{3x + 4\sqrt{1 - x^2}}{5} \right). \] ### Step 2: Differentiate using the chain rule Using the chain rule, we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{1}{\sqrt{1 - \left( \frac{3x + 4\sqrt{1 - x^2}}{5} \right)^2}} \cdot \frac{d}{dx} \left( \frac{3x + 4\sqrt{1 - x^2}}{5} \right). \] ### Step 3: Differentiate the inner function Now we need to differentiate the inner function \( \frac{3x + 4\sqrt{1 - x^2}}{5} \): \[ \frac{d}{dx} \left( 3x + 4\sqrt{1 - x^2} \right) = 3 + 4 \cdot \frac{1}{2\sqrt{1 - x^2}} \cdot (-2x) = 3 - \frac{4x}{\sqrt{1 - x^2}}. \] Thus, \[ \frac{d}{dx} \left( \frac{3x + 4\sqrt{1 - x^2}}{5} \right) = \frac{1}{5} \left( 3 - \frac{4x}{\sqrt{1 - x^2}} \right). \] ### Step 4: Substitute back into the derivative Now we substitute back into the derivative expression: \[ \frac{dy}{dx} = \frac{1}{\sqrt{1 - \left( \frac{3x + 4\sqrt{1 - x^2}}{5} \right)^2}} \cdot \frac{1}{5} \left( 3 - \frac{4x}{\sqrt{1 - x^2}} \right). \] ### Step 5: Simplify the expression Next, we simplify the term \( 1 - \left( \frac{3x + 4\sqrt{1 - x^2}}{5} \right)^2 \): Let \( u = \frac{3x + 4\sqrt{1 - x^2}}{5} \). Then, \[ u^2 = \frac{(3x + 4\sqrt{1 - x^2})^2}{25} = \frac{9x^2 + 24x\sqrt{1 - x^2} + 16(1 - x^2)}{25}. \] Now, we can find \( 1 - u^2 \): \[ 1 - u^2 = 1 - \frac{9x^2 + 24x\sqrt{1 - x^2} + 16(1 - x^2)}{25} = \frac{25 - (9x^2 + 24x\sqrt{1 - x^2} + 16 - 16x^2)}{25} = \frac{9 - 24x\sqrt{1 - x^2}}{25}. \] ### Final expression for \( \frac{dy}{dx} \) Putting it all together, we have: \[ \frac{dy}{dx} = \frac{1}{\sqrt{\frac{9 - 24x\sqrt{1 - x^2}}{25}}} \cdot \frac{1}{5} \left( 3 - \frac{4x}{\sqrt{1 - x^2}} \right). \] This simplifies to: \[ \frac{dy}{dx} = \frac{5}{\sqrt{9 - 24x\sqrt{1 - x^2}}} \cdot \frac{1}{5} \left( 3 - \frac{4x}{\sqrt{1 - x^2}} \right) = \frac{3 - \frac{4x}{\sqrt{1 - x^2}}}{\sqrt{9 - 24x\sqrt{1 - x^2}}}. \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y=cos^(-1)((3x+4sqrt(1-x^(2)))/(5)), find (dy)/(dx)

If y=sin ^(-1)((x)/( sqrt(x^(2) +a^(2)))) ,then (dy)/(dx)=

If y =sin ^(-1) sqrt((1+x^(2))/( 2) ),then (dy)/(dx) =

If y=sin^(-1){(5x+12 sqrt(1-x^(2)))/(13)}, find (dy)/(dx).

find dy/dx for sin^(-1)((3x+4sqrt(1-x^(2)))/(5))

If y= sin ^(-1) ((4cos x +5sin x )/( sqrt(41))) ,then (dy)/(dx)=

If y=3x^(3)sin^(-1)x+(x^(2)+2)sqrt(1-x^(2)), then (dy)/(dx)=

If y=sin ^(-1) (xsqrt( 1-x) +sqrt(x) sqrt (1-x^(2))),then (dy)/(dx)=

NIKITA PUBLICATION-DIFFERENTIATION -MCQ
  1. यदि y= sin ^(-1) {(5x+ 12sqrt (1-x^(2)))/(13)} तब (dy)/(dx) का मान ज...

    Text Solution

    |

  2. if y=sin^-1 ((sqrt(1+x)+sqrt(1-x))/2) then (dy)/(dx)

    Text Solution

    |

  3. If y=sin ^(-1) ((3x +4 sqrt(1-x^(2)))/( 5)),then (dy)/(dx)=

    Text Solution

    |

  4. If y={(log)(cosx)sinx}{(log)(sinx)cosx}^(-1)+sin^(-1)((2x)/(1+x^2)),fi...

    Text Solution

    |

  5. If y=sin[2tan^(-1){sqrt((1-x)/(1+x))}],fin d(dy)/(dx)

    Text Solution

    |

  6. If y=sin^2(cot^(- 1)sqrt((1+x)/(1-x))) then(dy)/(dx) is

    Text Solution

    |

  7. If y= cos ^(-1)sqrt (1-x) ,then (dy)/(dx) =

    Text Solution

    |

  8. If y=cos ^(-1) ((log x^(2))/( 1+(log x)^(2))) ,then (dy)/(dx)=

    Text Solution

    |

  9. If y=cos ^(-1) ((1-x^(2))/( 1+x^(2))) ,then (dy)/(dx)=

    Text Solution

    |

  10. If f(x)=cos^(-1)[(1-(logx)^2)/(1+(logx)^2)] , then the value of f'(e) ...

    Text Solution

    |

  11. If y=cos ^(-1) ((x-x^(-1))/( x+x^(-1))) ,then (dy)/(dx)=

    Text Solution

    |

  12. If y=cos ^(-1) ((x^(-1)-x) /(x^(-1) +x)),then (dy)/(dx)=

    Text Solution

    |

  13. If y=cos ^(-1) ((a^(-x) -a^(x))/(a^(-x) +a^(x))) ,then (dy)/(dx) =

    Text Solution

    |

  14. If y=cos ^(-1) sqrt((1+x) /( 2) )then (dy)/(dx)=

    Text Solution

    |

  15. If y =cos ^(-1)(xsin alpha -cos alpha sqrt(1-x^(2))),then (dy)/(dx)=

    Text Solution

    |

  16. If y=cos ^(-1) ((sqrt (1+x) -sqrt (1-x) )/( 2)) ,then (dy)/(dx)=

    Text Solution

    |

  17. Find (dy)/(dx) for the function: y=sin^(-1)sqrt((1-x))+cos^(-1)sqrt(x)

    Text Solution

    |

  18. If y=cos^(-1)((2x)/(1+x^(2))), then (dy)/(dx) is equal to

    Text Solution

    |

  19. If y=cos^(-1)((2x)/(1+x^(2))), then (dy)/(dx) is equal to

    Text Solution

    |

  20. sec^(- 1)((1+e^(2sqrt(x)))/(2e^(sqrt(x)))) differentiate

    Text Solution

    |