Home
Class 12
MATHS
If y=cos ^(-1) ((1-x^(2))/( 1+x^(2))) ,...

If ` y=cos ^(-1) ((1-x^(2))/( 1+x^(2))) ,then (dy)/(dx)=`

A

` (1)/(1+x^(2))`

B

` (-1)/(1+x^(2))`

C

` (2)/(1+x^(2))`

D

` (-2)/(1+x^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) for the function \( y = \cos^{-1} \left( \frac{1 - x^2}{1 + x^2} \right) \), we can follow these steps: ### Step 1: Recognize the relationship We know from trigonometric identities that: \[ \frac{1 - x^2}{1 + x^2} = \cos(2\theta) \quad \text{where} \quad x = \tan(\theta) \] Thus, we can express \( y \) in terms of \( \theta \): \[ y = \cos^{-1}(\cos(2\theta)) = 2\theta \] ### Step 2: Express \( \theta \) in terms of \( x \) Since \( x = \tan(\theta) \), we have: \[ \theta = \tan^{-1}(x) \] Substituting this back into our expression for \( y \): \[ y = 2\tan^{-1}(x) \] ### Step 3: Differentiate \( y \) with respect to \( x \) Now we differentiate \( y \): \[ \frac{dy}{dx} = 2 \cdot \frac{d}{dx}(\tan^{-1}(x)) \] Using the derivative of \( \tan^{-1}(x) \): \[ \frac{d}{dx}(\tan^{-1}(x)) = \frac{1}{1 + x^2} \] Thus, we have: \[ \frac{dy}{dx} = 2 \cdot \frac{1}{1 + x^2} = \frac{2}{1 + x^2} \] ### Final Answer \[ \frac{dy}{dx} = \frac{2}{1 + x^2} \] ---
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If let y=cos^(-1)((1-e^(2x))/(1+e^(2x)))" then "(dy)/(dx)=

If y=cos ^(-1) ((log x^(2))/( 1+(log x)^(2))) ,then (dy)/(dx)=

If y = cos^(-1) ((x^(2) -1)/(x^(2) +1)) " then " (dy)/(dx) = ?

If y=cos^(-1)backslash(1-6x^(2))/(1+6x^(2)), then (dy)/(dx) is

If y=cos^(-1)((2x)/(1+x^(2))) , then (dy)/(dx) is equal to

If y="cosec"^(-1)((x^(2)+1)/(x^(2)-1))+cos^(-1) ((x^(2)-1)/(x^(2)+1)),"then " (dy)/(dx)=

If y = cos^(-1) [(x+sqrt(1-x^(2)))/(sqrt(2))] then (dy)/(dx) =

If y=cos^(-1)((2x)/(1+x^(2))) then (dy)/(dx) is equal to :

If y=sin^(-1)((1-x^(2))/(1+x^(2)))+cos^(-1)((1-x^(2))/(1+x^(2))) find (dy)/(dx)

NIKITA PUBLICATION-DIFFERENTIATION -MCQ
  1. If y= cos ^(-1)sqrt (1-x) ,then (dy)/(dx) =

    Text Solution

    |

  2. If y=cos ^(-1) ((log x^(2))/( 1+(log x)^(2))) ,then (dy)/(dx)=

    Text Solution

    |

  3. If y=cos ^(-1) ((1-x^(2))/( 1+x^(2))) ,then (dy)/(dx)=

    Text Solution

    |

  4. If f(x)=cos^(-1)[(1-(logx)^2)/(1+(logx)^2)] , then the value of f'(e) ...

    Text Solution

    |

  5. If y=cos ^(-1) ((x-x^(-1))/( x+x^(-1))) ,then (dy)/(dx)=

    Text Solution

    |

  6. If y=cos ^(-1) ((x^(-1)-x) /(x^(-1) +x)),then (dy)/(dx)=

    Text Solution

    |

  7. If y=cos ^(-1) ((a^(-x) -a^(x))/(a^(-x) +a^(x))) ,then (dy)/(dx) =

    Text Solution

    |

  8. If y=cos ^(-1) sqrt((1+x) /( 2) )then (dy)/(dx)=

    Text Solution

    |

  9. If y =cos ^(-1)(xsin alpha -cos alpha sqrt(1-x^(2))),then (dy)/(dx)=

    Text Solution

    |

  10. If y=cos ^(-1) ((sqrt (1+x) -sqrt (1-x) )/( 2)) ,then (dy)/(dx)=

    Text Solution

    |

  11. Find (dy)/(dx) for the function: y=sin^(-1)sqrt((1-x))+cos^(-1)sqrt(x)

    Text Solution

    |

  12. If y=cos^(-1)((2x)/(1+x^(2))), then (dy)/(dx) is equal to

    Text Solution

    |

  13. If y=cos^(-1)((2x)/(1+x^(2))), then (dy)/(dx) is equal to

    Text Solution

    |

  14. sec^(- 1)((1+e^(2sqrt(x)))/(2e^(sqrt(x)))) differentiate

    Text Solution

    |

  15. If y=cos ^(-1) sqrt(1+x^(2)),then (dy)/(dx) =

    Text Solution

    |

  16. If y=cos ^(-1) ((1)/( 3x-4x^(3))) ,then (dy)/(dx)

    Text Solution

    |

  17. if y=tan^-1(x/sqrt(1+x^2)) then find (dy)/(dx)

    Text Solution

    |

  18. If y=tan ^(-1) ((2^(x+1))/( 1-4^(x))),then (dy)/(dx) =

    Text Solution

    |

  19. If y=tan^(-1)((3x-x^3)/(1-3x^2)),1/(sqrt(3))<x<1/(sqrt(3)), then find ...

    Text Solution

    |

  20. If y=(3a^(2)x-x^(3))/(a^(3)-3ax^(2)) then find (dy)/(dx)

    Text Solution

    |