Home
Class 12
MATHS
If y=cos ^(-1) ((x-x^(-1))/( x+x^(-1)))...

If ` y=cos ^(-1) ((x-x^(-1))/( x+x^(-1))) ,then (dy)/(dx)=`

A

` (1)/(1+x^(2))`

B

` (-1)/( 1+x^(2))`

C

` (2)/(1+x^(2))`

D

` (-2)/( 1+x^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given equation: **Step 1: Rewrite the function** Given: \[ y = \cos^{-1} \left( \frac{x - x^{-1}}{x + x^{-1}} \right) \] We can simplify the expression inside the cosine inverse. **Step 2: Simplify the expression** The expression can be rewritten as: \[ \frac{x - \frac{1}{x}}{x + \frac{1}{x}} = \frac{x^2 - 1}{x^2 + 1} \] Thus, we have: \[ y = \cos^{-1} \left( \frac{x^2 - 1}{x^2 + 1} \right) \] **Step 3: Use the identity for cosine inverse** We know that: \[ \cos^{-1}(-x) = \pi - \cos^{-1}(x) \] So we can rewrite: \[ y = \cos^{-1} \left( -\frac{1 - x^2}{1 + x^2} \right) = \pi - \cos^{-1} \left( \frac{1 - x^2}{1 + x^2} \right) \] **Step 4: Use the double angle identity** We also know that: \[ \tan^{-1}(x) = \frac{1 - x^2}{1 + x^2} \] Thus: \[ y = \pi - 2 \tan^{-1}(x) \] **Step 5: Differentiate y with respect to x** Now we differentiate \( y \): \[ \frac{dy}{dx} = 0 - 2 \cdot \frac{d}{dx} \tan^{-1}(x) \] Using the derivative of \( \tan^{-1}(x) \): \[ \frac{d}{dx} \tan^{-1}(x) = \frac{1}{1 + x^2} \] So: \[ \frac{dy}{dx} = -2 \cdot \frac{1}{1 + x^2} \] **Final Result:** Thus, the derivative is: \[ \frac{dy}{dx} = -\frac{2}{1 + x^2} \] ---
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y=cos ^(-1) ((x^(-1)-x) /(x^(-1) +x)),then (dy)/(dx)=

If y=cos ^(-1) ((a^(-x) -a^(x))/(a^(-x) +a^(x))) ,then (dy)/(dx) =

If y = Cos^(-1){(x-x^(-1))/((x+x^(-1))} , x>0 then find dy/dx

y=(1+x)/(1-x) then (dy)/(dx)

If y="cosec"^(-1)((x^(2)+1)/(x^(2)-1))+cos^(-1) ((x^(2)-1)/(x^(2)+1)),"then " (dy)/(dx)=

If y=cot^(-1)((sin x)/(1+cos x)) then (dy)/(dx)=

If y = tan^(-1) ((1 - cos x)/(sin x)) " then "(dy)/(dx)= ?

if y=tan^(-1)((cos x)/(1+sin x)) then (dy)/(dx)

NIKITA PUBLICATION-DIFFERENTIATION -MCQ
  1. If y=cos ^(-1) ((1-x^(2))/( 1+x^(2))) ,then (dy)/(dx)=

    Text Solution

    |

  2. If f(x)=cos^(-1)[(1-(logx)^2)/(1+(logx)^2)] , then the value of f'(e) ...

    Text Solution

    |

  3. If y=cos ^(-1) ((x-x^(-1))/( x+x^(-1))) ,then (dy)/(dx)=

    Text Solution

    |

  4. If y=cos ^(-1) ((x^(-1)-x) /(x^(-1) +x)),then (dy)/(dx)=

    Text Solution

    |

  5. If y=cos ^(-1) ((a^(-x) -a^(x))/(a^(-x) +a^(x))) ,then (dy)/(dx) =

    Text Solution

    |

  6. If y=cos ^(-1) sqrt((1+x) /( 2) )then (dy)/(dx)=

    Text Solution

    |

  7. If y =cos ^(-1)(xsin alpha -cos alpha sqrt(1-x^(2))),then (dy)/(dx)=

    Text Solution

    |

  8. If y=cos ^(-1) ((sqrt (1+x) -sqrt (1-x) )/( 2)) ,then (dy)/(dx)=

    Text Solution

    |

  9. Find (dy)/(dx) for the function: y=sin^(-1)sqrt((1-x))+cos^(-1)sqrt(x)

    Text Solution

    |

  10. If y=cos^(-1)((2x)/(1+x^(2))), then (dy)/(dx) is equal to

    Text Solution

    |

  11. If y=cos^(-1)((2x)/(1+x^(2))), then (dy)/(dx) is equal to

    Text Solution

    |

  12. sec^(- 1)((1+e^(2sqrt(x)))/(2e^(sqrt(x)))) differentiate

    Text Solution

    |

  13. If y=cos ^(-1) sqrt(1+x^(2)),then (dy)/(dx) =

    Text Solution

    |

  14. If y=cos ^(-1) ((1)/( 3x-4x^(3))) ,then (dy)/(dx)

    Text Solution

    |

  15. if y=tan^-1(x/sqrt(1+x^2)) then find (dy)/(dx)

    Text Solution

    |

  16. If y=tan ^(-1) ((2^(x+1))/( 1-4^(x))),then (dy)/(dx) =

    Text Solution

    |

  17. If y=tan^(-1)((3x-x^3)/(1-3x^2)),1/(sqrt(3))<x<1/(sqrt(3)), then find ...

    Text Solution

    |

  18. If y=(3a^(2)x-x^(3))/(a^(3)-3ax^(2)) then find (dy)/(dx)

    Text Solution

    |

  19. If y=tan n^(-1) ((sqrtx(3-x))/( 1-3x) ) ,then (dy)/(dx) =

    Text Solution

    |

  20. If y=tan^(-1)sqrt((1-x)/(1+x)), then find (dy)/(dx) when -1 lt x lt 1.

    Text Solution

    |