Home
Class 12
MATHS
If y=cos ^(-1) ((sqrt (1+x) -sqrt (1-x)...

If ` y=cos ^(-1) ((sqrt (1+x) -sqrt (1-x) )/( 2)) ,then (dy)/(dx)=`

A

` (1)/(2sqrt ( 1-x^(2)))`

B

` (-1)/(2sqrt ( 1-x^(2)))`

C

` (2)/(2sqrt ( 1-x^(2)))`

D

` (-2)/(2sqrt ( 1-x^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( y = \cos^{-1} \left( \frac{\sqrt{1+x} - \sqrt{1-x}}{2} \right) \) and find \( \frac{dy}{dx} \), we will follow these steps: ### Step 1: Simplify the expression inside the inverse cosine Let \( z = \frac{\sqrt{1+x} - \sqrt{1-x}}{2} \). We can simplify \( z \) using the identity for sine in terms of half angles. ### Step 2: Substitute \( x \) with \( \sin \theta \) To simplify further, we can set \( x = \sin \theta \). This gives us: \[ \sqrt{1+x} = \sqrt{1+\sin \theta} = \sqrt{2 \cos^2 \frac{\theta}{2}} = \sqrt{2} \cos \frac{\theta}{2} \] \[ \sqrt{1-x} = \sqrt{1-\sin \theta} = \sqrt{2 \cos^2 \frac{\theta}{2}} = \sqrt{2} \sin \frac{\theta}{2} \] Thus, \[ z = \frac{\sqrt{2} \cos \frac{\theta}{2} - \sqrt{2} \sin \frac{\theta}{2}}{2} = \frac{\sqrt{2}}{2} \left( \cos \frac{\theta}{2} - \sin \frac{\theta}{2} \right) \] ### Step 3: Rewrite \( y \) Now we can express \( y \) as: \[ y = \cos^{-1} \left( \frac{\sqrt{2}}{2} \left( \cos \frac{\theta}{2} - \sin \frac{\theta}{2} \right) \right) \] Using the identity \( \cos^{-1}(-x) = \pi - \cos^{-1}(x) \), we can express \( y \) as: \[ y = \pi - \frac{\theta}{2} \] ### Step 4: Substitute back for \( \theta \) Since \( \theta = \sin^{-1}(x) \), we have: \[ y = \pi - \frac{1}{2} \sin^{-1}(x) \] ### Step 5: Differentiate \( y \) with respect to \( x \) Now we differentiate \( y \): \[ \frac{dy}{dx} = 0 - \frac{1}{2} \cdot \frac{1}{\sqrt{1-x^2}} \cdot \frac{d}{dx}(x) = -\frac{1}{2\sqrt{1-x^2}} \] ### Final Answer Thus, the derivative is: \[ \frac{dy}{dx} = -\frac{1}{2\sqrt{1-x^2}} \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y=sin ^(-1) (xsqrt( 1-x) +sqrt(x) sqrt (1-x^(2))),then (dy)/(dx)=

If y=sqrt(1+x^(2)) then (dy)/(dx) =

If y=cos ^(-1) sqrt((1+x) /( 2) )then (dy)/(dx)=

If x=sqrt(1-y^2) , then (dy)/(dx)=

If y = cos^(-1) [(x+sqrt(1-x^(2)))/(sqrt(2))] then (dy)/(dx) =

If y=cos ^(-1) sqrt(1+x^(2)),then (dy)/(dx) =

NIKITA PUBLICATION-DIFFERENTIATION -MCQ
  1. If y=cos ^(-1) sqrt((1+x) /( 2) )then (dy)/(dx)=

    Text Solution

    |

  2. If y =cos ^(-1)(xsin alpha -cos alpha sqrt(1-x^(2))),then (dy)/(dx)=

    Text Solution

    |

  3. If y=cos ^(-1) ((sqrt (1+x) -sqrt (1-x) )/( 2)) ,then (dy)/(dx)=

    Text Solution

    |

  4. Find (dy)/(dx) for the function: y=sin^(-1)sqrt((1-x))+cos^(-1)sqrt(x)

    Text Solution

    |

  5. If y=cos^(-1)((2x)/(1+x^(2))), then (dy)/(dx) is equal to

    Text Solution

    |

  6. If y=cos^(-1)((2x)/(1+x^(2))), then (dy)/(dx) is equal to

    Text Solution

    |

  7. sec^(- 1)((1+e^(2sqrt(x)))/(2e^(sqrt(x)))) differentiate

    Text Solution

    |

  8. If y=cos ^(-1) sqrt(1+x^(2)),then (dy)/(dx) =

    Text Solution

    |

  9. If y=cos ^(-1) ((1)/( 3x-4x^(3))) ,then (dy)/(dx)

    Text Solution

    |

  10. if y=tan^-1(x/sqrt(1+x^2)) then find (dy)/(dx)

    Text Solution

    |

  11. If y=tan ^(-1) ((2^(x+1))/( 1-4^(x))),then (dy)/(dx) =

    Text Solution

    |

  12. If y=tan^(-1)((3x-x^3)/(1-3x^2)),1/(sqrt(3))<x<1/(sqrt(3)), then find ...

    Text Solution

    |

  13. If y=(3a^(2)x-x^(3))/(a^(3)-3ax^(2)) then find (dy)/(dx)

    Text Solution

    |

  14. If y=tan n^(-1) ((sqrtx(3-x))/( 1-3x) ) ,then (dy)/(dx) =

    Text Solution

    |

  15. If y=tan^(-1)sqrt((1-x)/(1+x)), then find (dy)/(dx) when -1 lt x lt 1.

    Text Solution

    |

  16. If y=tan ^(-1) sqrt(( a-x)/( a+x)) ,then (dy)/(dx) =

    Text Solution

    |

  17. If y=tan ^(-1) (sqrt( 1+x^(2)) +x ),then (dy)/(dx) =

    Text Solution

    |

  18. If y=tan ^(-1) (sqrt( 1+x^(2))-x),then ( dy)/(dx)=

    Text Solution

    |

  19. 11I fy=tan^(- 1)[(sqrt(1+a^2x^2)-1)/(a x)],t h e n f i n d(dy)/(dx)

    Text Solution

    |

  20. If y = tan^(-1) {(sqrt(1 + x^(2)) -1)/(x)} " then " (dy)/(dx)= ?

    Text Solution

    |