Home
Class 12
MATHS
If y=cos ^(-1) sqrt(1+x^(2)),then (dy)/...

If ` y=cos ^(-1) sqrt(1+x^(2)),then (dy)/(dx) =`

A

` (-2)/( 1+x^(2))`

B

` (2)/( 1+x^(2))`

C

` (-1)/( 1+x^(2))`

D

` (1)/( 1+x^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( y = \cos^{-1}(\sqrt{1+x^2}) \) and find \( \frac{dy}{dx} \), we will use the chain rule of differentiation. Here’s a step-by-step solution: ### Step 1: Differentiate using the chain rule We know that if \( y = \cos^{-1}(u) \), then: \[ \frac{dy}{dx} = -\frac{1}{\sqrt{1 - u^2}} \cdot \frac{du}{dx} \] where \( u = \sqrt{1 + x^2} \). ### Step 2: Find \( \frac{du}{dx} \) Now, we need to differentiate \( u = \sqrt{1 + x^2} \): \[ u = (1 + x^2)^{1/2} \] Using the chain rule: \[ \frac{du}{dx} = \frac{1}{2}(1 + x^2)^{-1/2} \cdot (2x) = \frac{x}{\sqrt{1 + x^2}} \] ### Step 3: Substitute \( u \) back into the derivative Next, we substitute \( u \) back into the derivative formula: \[ \frac{dy}{dx} = -\frac{1}{\sqrt{1 - (\sqrt{1 + x^2})^2}} \cdot \frac{x}{\sqrt{1 + x^2}} \] ### Step 4: Simplify the expression Now, simplify \( 1 - (\sqrt{1 + x^2})^2 \): \[ 1 - (1 + x^2) = -x^2 \] Thus, we have: \[ \frac{dy}{dx} = -\frac{1}{\sqrt{-x^2}} \cdot \frac{x}{\sqrt{1 + x^2}} \] Since \( \sqrt{-x^2} = i|x| \) (where \( i \) is the imaginary unit), we can write: \[ \frac{dy}{dx} = -\frac{1}{i|x|} \cdot \frac{x}{\sqrt{1 + x^2}} \] ### Step 5: Final simplification Now, simplifying further: \[ \frac{dy}{dx} = -\frac{x}{i|x|\sqrt{1 + x^2}} \] If \( x \) is positive, \( |x| = x \), and if \( x \) is negative, \( |x| = -x \). Thus, we can write: \[ \frac{dy}{dx} = -\frac{1}{i\sqrt{1 + x^2}} \] ### Final Answer The final result for \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = -\frac{1}{i\sqrt{1 + x^2}} \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y= cos ^(-1)sqrt (1-x) ,then (dy)/(dx) =

If y=sqrt(1+x^(2)) then (dy)/(dx) =

If y=tan ^(-1) (sqrt( 1+x^(2))-x),then ( dy)/(dx)=

If y=xsin^(-1)x+sqrt(1-x^2) then (dy)/(dx)=

If y=cos^(-1) sqrt((1+cos x)//(2)),"then " dy/dx=

If y=tan ^(-1) (sqrt( 1+x^(2)) +x ),then (dy)/(dx) =

If y =sin ^(-1) sqrt((1+x^(2))/( 2) ),then (dy)/(dx) =

If x=sqrt(1-y^2) , then (dy)/(dx)=

If y=(1)/(sqrt(x^(2)-x+1)) , then (dy)/(dx)=

If y= sqrt(x-1) +sqrt( x+1) ,then (dy)/(dx)