Home
Class 12
MATHS
If y=tan ^(-1) sqrt(( a-x)/( a+x)) ,then...

If `y=tan ^(-1) sqrt(( a-x)/( a+x)) ,then (dy)/(dx) =`

A

` (-1)/(2sqrt (a^(2)-x^(2))) `

B

` (1)/(2sqrt (a^(2)-x^(2))) `

C

` (-1)/(sqrt (a^(2)-x^(2))) `

D

` (1)/(sqrt (a^(2)-x^(2))) `

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \tan^{-1} \left( \sqrt{\frac{a-x}{a+x}} \right) \), we will follow a step-by-step approach. ### Step 1: Identify the derivative of \( \tan^{-1}(x) \) The derivative of \( y = \tan^{-1}(u) \) with respect to \( x \) is given by: \[ \frac{dy}{dx} = \frac{1}{1 + u^2} \cdot \frac{du}{dx} \] where \( u = \sqrt{\frac{a-x}{a+x}} \). **Hint:** Remember the derivative of the inverse tangent function and how to apply the chain rule. ### Step 2: Differentiate \( u = \sqrt{\frac{a-x}{a+x}} \) To differentiate \( u \), we will first rewrite it as: \[ u = \left( \frac{a-x}{a+x} \right)^{1/2} \] Using the chain rule, we have: \[ \frac{du}{dx} = \frac{1}{2} \left( \frac{a-x}{a+x} \right)^{-1/2} \cdot \frac{d}{dx} \left( \frac{a-x}{a+x} \right) \] **Hint:** Use the quotient rule to differentiate the fraction \( \frac{a-x}{a+x} \). ### Step 3: Differentiate \( \frac{a-x}{a+x} \) using the quotient rule Let \( v = a - x \) and \( w = a + x \). Then, using the quotient rule: \[ \frac{d}{dx} \left( \frac{v}{w} \right) = \frac{w \frac{dv}{dx} - v \frac{dw}{dx}}{w^2} \] where \( \frac{dv}{dx} = -1 \) and \( \frac{dw}{dx} = 1 \). Therefore: \[ \frac{d}{dx} \left( \frac{a-x}{a+x} \right) = \frac{(a+x)(-1) - (a-x)(1)}{(a+x)^2} \] Simplifying this gives: \[ \frac{-(a+x) - (a-x)}{(a+x)^2} = \frac{-2a}{(a+x)^2} \] **Hint:** Simplify the expression carefully to avoid mistakes. ### Step 4: Substitute back to find \( \frac{du}{dx} \) Now substituting back into the expression for \( \frac{du}{dx} \): \[ \frac{du}{dx} = \frac{1}{2} \left( \frac{a-x}{a+x} \right)^{-1/2} \cdot \frac{-2a}{(a+x)^2} \] This simplifies to: \[ \frac{du}{dx} = -\frac{a}{(a+x)^2 \sqrt{\frac{a-x}{a+x}}} \] **Hint:** Ensure to keep track of the negative sign and the square root. ### Step 5: Substitute \( u \) and \( \frac{du}{dx} \) into the derivative of \( y \) Now substituting \( u \) and \( \frac{du}{dx} \) back into the derivative of \( y \): \[ \frac{dy}{dx} = \frac{1}{1 + \left( \frac{a-x}{a+x} \right)} \cdot \left(-\frac{a}{(a+x)^2 \sqrt{\frac{a-x}{a+x}}}\right) \] Simplifying \( 1 + \frac{a-x}{a+x} \) gives: \[ \frac{(a+x) + (a-x)}{a+x} = \frac{2a}{a+x} \] Thus: \[ \frac{dy}{dx} = \frac{1}{\frac{2a}{a+x}} \cdot \left(-\frac{a}{(a+x)^2 \sqrt{\frac{a-x}{a+x}}}\right) \] This simplifies to: \[ \frac{dy}{dx} = -\frac{(a+x)}{2a} \cdot \frac{a}{(a+x)^2 \sqrt{\frac{a-x}{a+x}}} \] Cancelling \( a+x \): \[ \frac{dy}{dx} = -\frac{1}{2\sqrt{\frac{a-x}{a+x}}} \] **Final Result:** \[ \frac{dy}{dx} = -\frac{1}{2\sqrt{\frac{a-x}{a+x}}} \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y=tan ^(-1) (sqrt( 1+x^(2)) +x ),then (dy)/(dx) =

If y = tan^(-1) ((4sqrt(x))/(1 - 4x))" then" (dy)/(dx) is

If y=tan ^(-1) (sqrt( 1+x^(2))-x),then ( dy)/(dx)=

If y=tan^(-1)sqrt((x+1)/(x-1)), then (dy)/(dx) is (-1)/(2|x|sqrt(x^(2)-1)) (b) (-1)/(2x sqrt(x^(2)-1))(1)/(2x sqrt(x^(2)-1))( d) none of these

If y=tan ^(-1) ((x-a)/( x+a)),then (dy)/(dx)=

If y= sqrt (x+(1)/( x) ),then (dy)/(dx) =

If y = tan^(-1)((x)/(sqrt(1 -x^2))) , then (dy)/(dx) is equal to

If y=cos^(2)[tan^(-1)sqrt((1-x)/(1+x)))] then dy/dx=

If y= sqrt ((1-tan 2x ) /( 1+tan 2x )) ,then (dy)/(dx) =