Home
Class 12
MATHS
If y=tan ^(-1) (sqrt( 1+x^(2)) +x ),the...

If ` y=tan ^(-1) (sqrt( 1+x^(2)) +x ),then (dy)/(dx) =`

A

` (-1)/( 2( 1+x^(2)))`

B

` (1)/( 2( 1+x^(2)))`

C

` (-2)/( 2( 1+x^(2)))`

D

` (2)/( 2( 1+x^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \tan^{-1}(\sqrt{1+x^2} + x) \), we will apply the chain rule and the derivative of the inverse tangent function. ### Step-by-Step Solution: 1. **Identify the function**: \[ y = \tan^{-1}(\sqrt{1+x^2} + x) \] 2. **Differentiate using the chain rule**: The derivative of \( \tan^{-1}(u) \) is given by: \[ \frac{dy}{dx} = \frac{1}{1 + u^2} \cdot \frac{du}{dx} \] where \( u = \sqrt{1+x^2} + x \). 3. **Find \( \frac{du}{dx} \)**: To differentiate \( u = \sqrt{1+x^2} + x \), we need to differentiate each term: - The derivative of \( \sqrt{1+x^2} \) is: \[ \frac{d}{dx}(\sqrt{1+x^2}) = \frac{1}{2\sqrt{1+x^2}} \cdot (2x) = \frac{x}{\sqrt{1+x^2}} \] - The derivative of \( x \) is: \[ \frac{d}{dx}(x) = 1 \] Therefore, \[ \frac{du}{dx} = \frac{x}{\sqrt{1+x^2}} + 1 \] 4. **Substitute \( u \) and \( \frac{du}{dx} \) into the derivative formula**: Now we substitute \( u \) into the derivative: \[ \frac{dy}{dx} = \frac{1}{1 + (\sqrt{1+x^2} + x)^2} \cdot \left(\frac{x}{\sqrt{1+x^2}} + 1\right) \] 5. **Simplify \( 1 + (\sqrt{1+x^2} + x)^2 \)**: Expanding \( (\sqrt{1+x^2} + x)^2 \): \[ (\sqrt{1+x^2} + x)^2 = 1 + x^2 + 2x\sqrt{1+x^2} \] Thus, \[ 1 + (\sqrt{1+x^2} + x)^2 = 1 + 1 + x^2 + 2x\sqrt{1+x^2} = 2 + x^2 + 2x\sqrt{1+x^2} \] 6. **Final expression for \( \frac{dy}{dx} \)**: Putting everything together: \[ \frac{dy}{dx} = \frac{\frac{x}{\sqrt{1+x^2}} + 1}{2 + x^2 + 2x\sqrt{1+x^2}} \] ### Final Answer: \[ \frac{dy}{dx} = \frac{\frac{x + \sqrt{1+x^2}}{\sqrt{1+x^2}}}{2 + x^2 + 2x\sqrt{1+x^2}} \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y=tan ^(-1) ((a-x) /(1+x^(2))),then (dy)/(dx) =

If y=tan^(-1)((x)/(sqrt(1+x^(2))-1)), then (dy)/(dx)=

If y = tan^(-1)((x)/(sqrt(1 -x^2))) , then (dy)/(dx) is equal to

If y=tan ^(-1) sqrt(( a-x)/( a+x)) ,then (dy)/(dx) =

If y = tan ^(-1) ((2x)/(1-x^(2))) , " then " (dy)/(dx) =____________

If y = tan^(-1) {(sqrt(1 + x^(2)) -1)/(x)} " then " (dy)/(dx)= ?

If y=tan^(-1)(sqrt(1+x^(2))-x) then,prove that (dy)/(dx)=-(1)/(2(x^(2)+1))

if y=tan^(-1)((x)/(sqrt(1+x^(2)))) then find (dy)/(dx)

If y=tan^(-1)((sqrt(1+x^(2))-1)/(x)) , then find (dy)/(dx) when -1lexle1.

If y=tan ^(-1) ((x-a)/( x+a)),then (dy)/(dx)=