Home
Class 12
MATHS
If y=tan ^(-1) (sqrt( 1+x^(2))-x),then ...

If ` y=tan ^(-1) (sqrt( 1+x^(2))-x),then ( dy)/(dx)=`

A

` (2)/( 1+x^(2))`

B

` (-2)/( 1+x^(2))`

C

` (1)/( 2(1+x^(2))) `

D

` (-1)/( 2(1+x^(2))) `

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \tan^{-1}(\sqrt{1 + x^2} - x) \), we will follow these steps: ### Step 1: Rewrite the function We start with the given function: \[ y = \tan^{-1}(\sqrt{1 + x^2} - x) \] ### Step 2: Differentiate using the chain rule To differentiate \( y \), we apply the chain rule. The derivative of \( \tan^{-1}(u) \) is given by: \[ \frac{dy}{dx} = \frac{1}{1 + u^2} \cdot \frac{du}{dx} \] where \( u = \sqrt{1 + x^2} - x \). ### Step 3: Find \( \frac{du}{dx} \) Now, we need to differentiate \( u \): \[ u = \sqrt{1 + x^2} - x \] To differentiate \( u \), we use the derivative of \( \sqrt{1 + x^2} \): \[ \frac{d}{dx}(\sqrt{1 + x^2}) = \frac{x}{\sqrt{1 + x^2}} \] Thus, \[ \frac{du}{dx} = \frac{x}{\sqrt{1 + x^2}} - 1 \] ### Step 4: Substitute \( u \) and \( \frac{du}{dx} \) into the derivative formula Now we substitute \( u \) and \( \frac{du}{dx} \) into the derivative formula: \[ \frac{dy}{dx} = \frac{1}{1 + (\sqrt{1 + x^2} - x)^2} \cdot \left(\frac{x}{\sqrt{1 + x^2}} - 1\right) \] ### Step 5: Simplify \( 1 + (\sqrt{1 + x^2} - x)^2 \) Next, we need to simplify \( 1 + (\sqrt{1 + x^2} - x)^2 \): \[ (\sqrt{1 + x^2} - x)^2 = 1 + x^2 - 2x\sqrt{1 + x^2} \] Thus, \[ 1 + (\sqrt{1 + x^2} - x)^2 = 1 + 1 + x^2 - 2x\sqrt{1 + x^2} = 2 + x^2 - 2x\sqrt{1 + x^2} \] ### Step 6: Final expression for \( \frac{dy}{dx} \) Now we can write the final expression for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{\frac{x}{\sqrt{1 + x^2}} - 1}{2 + x^2 - 2x\sqrt{1 + x^2}} \] ### Final Result Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{x - \sqrt{1 + x^2}}{\sqrt{1 + x^2}(2 + x^2 - 2x\sqrt{1 + x^2})} \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y=tan^(-1)((x)/(sqrt(1+x^(2))-1)), then (dy)/(dx)=

If y = tan^(-1)((x)/(sqrt(1 -x^2))) , then (dy)/(dx) is equal to

If y=tan ^(-1) ((a-x) /(1+x^(2))),then (dy)/(dx) =

If y=tan ^(-1) sqrt(( a-x)/( a+x)) ,then (dy)/(dx) =

If y=sqrt(1+x^(2)) then (dy)/(dx) =

If y=tan^(-1)(sqrt(1+x^(2))-x) then,prove that (dy)/(dx)=-(1)/(2(x^(2)+1))

if y=tan^(-1)((x)/(sqrt(1+x^(2)))) then find (dy)/(dx)

If y = tan^(-1) {(sqrt(1 + x^(2)) -1)/(x)} " then " (dy)/(dx)= ?

If y=tan^(-1)((sqrt(1+x^(2))-1)/(x)) , then find (dy)/(dx) when -1lexle1.

If y = tan ^(-1) ((2x)/(1-x^(2))) , " then " (dy)/(dx) =____________