Home
Class 12
MATHS
If y=tan ^(-1) ((6x )/( 1-8x^(2))),then...

If ` y=tan ^(-1) ((6x )/( 1-8x^(2))),then (dy)/(dx)=`

A

` (4)/( 1+16x^(2) ) -(2)/( 1+4x^(2))`

B

` (4)/( 1+16x^(2) ) +(2)/( 1+4x^(2))`

C

` (2)/( 1+16x^(2) ) -(1)/( 1+4x^(2))`

D

` (2)/( 1+16x^(2) ) +(1)/( 1+4x^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the function \(y = \tan^{-1}\left(\frac{6x}{1 - 8x^2}\right)\), we can use the properties of the inverse tangent function and differentiation. Here's a step-by-step solution: ### Step 1: Rewrite the function using the tangent addition formula We can express \(y\) as: \[ y = \tan^{-1}(6x) - \tan^{-1}(8x^2) \] This is based on the identity for the tangent of the difference of two angles: \[ \tan^{-1}(A) - \tan^{-1}(B) = \tan^{-1}\left(\frac{A - B}{1 + AB}\right) \] In our case, we can set \(A = 6x\) and \(B = 8x^2\). ### Step 2: Differentiate using the derivative of the inverse tangent function The derivative of \(\tan^{-1}(u)\) is given by: \[ \frac{d}{dx}(\tan^{-1}(u)) = \frac{1}{1 + u^2} \cdot \frac{du}{dx} \] We will apply this to both terms. ### Step 3: Differentiate \(y\) 1. For \(u = 6x\): \[ \frac{du}{dx} = 6 \] Therefore, \[ \frac{d}{dx}(\tan^{-1}(6x)) = \frac{1}{1 + (6x)^2} \cdot 6 = \frac{6}{1 + 36x^2} \] 2. For \(v = 8x^2\): \[ \frac{dv}{dx} = 16x \] Therefore, \[ \frac{d}{dx}(\tan^{-1}(8x^2)) = \frac{1}{1 + (8x^2)^2} \cdot 16x = \frac{16x}{1 + 64x^4} \] ### Step 4: Combine the derivatives Now, we can combine the derivatives: \[ \frac{dy}{dx} = \frac{6}{1 + 36x^2} - \frac{16x}{1 + 64x^4} \] ### Step 5: Simplify the expression To combine these fractions, we need a common denominator: \[ \frac{dy}{dx} = \frac{6(1 + 64x^4) - 16x(1 + 36x^2)}{(1 + 36x^2)(1 + 64x^4)} \] Expanding the numerator: \[ = \frac{6 + 384x^4 - 16x - 576x^3}{(1 + 36x^2)(1 + 64x^4)} \] Thus, we have: \[ \frac{dy}{dx} = \frac{384x^4 - 576x^3 - 16x + 6}{(1 + 36x^2)(1 + 64x^4)} \] ### Final Result The derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = \frac{384x^4 - 576x^3 - 16x + 6}{(1 + 36x^2)(1 + 64x^4)} \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y=tan ^(-1) ((a-x) /(1+x^(2))),then (dy)/(dx) =

If y = tan ^(-1) ((2x)/(1-x^(2))) , " then " (dy)/(dx) =____________

If y=tan ^(-1) (sqrt( 1+x^(2)) +x ),then (dy)/(dx) =

If y=tan ^(-1) (sqrt( 1+x^(2))-x),then ( dy)/(dx)=

If y=tan ^(-1) ((x-a)/( x+a)),then (dy)/(dx)=

If y= tan ^(-1) ((5ax )/( a^(2) - 6x^(2))),then (dy)/(dx) =

If y=tan^(-1)((1+x)/(1-x)) then (dy)/(dx)=

if y=tan^(-1)((2x)/(1-x^(2))) then prove that (dy)/(dx)=(2)/(1+x^(2))

if y=tan^(-1)((cos x)/(1+sin x)) then (dy)/(dx)

If y=tan^(-1)((1+cos x)/(sin x)),then(dy)/(dx)=