Home
Class 12
MATHS
If y=tan ^(-1) ((a+x) /(1-ax) ),then (dy...

If `y=tan ^(-1) ((a+x) /(1-ax) ),then (dy)/(dx) =`

A

` (1)/( 1+a^(2) ) `

B

` (-1)/( 1+a^(2) ) `

C

` (1)/( 1+x^(2) ) `

D

` (-1)/( 1+x^(2) ) `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to differentiate the function given by: \[ y = \tan^{-1}\left(\frac{a+x}{1-ax}\right) \] ### Step 1: Differentiate using the chain rule Using the derivative of the inverse tangent function, we have: \[ \frac{dy}{dx} = \frac{1}{1 + \left(\frac{a+x}{1-ax}\right)^2} \cdot \frac{d}{dx}\left(\frac{a+x}{1-ax}\right) \] ### Step 2: Differentiate the fraction Now we need to differentiate the function \(\frac{a+x}{1-ax}\). We will use the quotient rule for differentiation, which states: \[ \frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2} \] Here, \(f(x) = a+x\) and \(g(x) = 1-ax\). - \(f'(x) = 1\) - \(g'(x) = -a\) Now applying the quotient rule: \[ \frac{d}{dx}\left(\frac{a+x}{1-ax}\right) = \frac{(1-ax)(1) - (a+x)(-a)}{(1-ax)^2} \] ### Step 3: Simplify the numerator Expanding the numerator: \[ = \frac{(1-ax) + a(a+x)}{(1-ax)^2} \] \[ = \frac{1 - ax + a^2 + ax}{(1-ax)^2} \] \[ = \frac{1 + a^2}{(1-ax)^2} \] ### Step 4: Substitute back into the derivative Now substituting this back into the derivative we found in Step 1: \[ \frac{dy}{dx} = \frac{1}{1 + \left(\frac{a+x}{1-ax}\right)^2} \cdot \frac{1 + a^2}{(1-ax)^2} \] ### Step 5: Simplify the expression Next, we simplify \(\left(\frac{a+x}{1-ax}\right)^2\): \[ \left(\frac{a+x}{1-ax}\right)^2 = \frac{(a+x)^2}{(1-ax)^2} \] Thus, \[ 1 + \left(\frac{a+x}{1-ax}\right)^2 = 1 + \frac{(a+x)^2}{(1-ax)^2} = \frac{(1-ax)^2 + (a+x)^2}{(1-ax)^2} \] Now substituting this back into the derivative: \[ \frac{dy}{dx} = \frac{1 + a^2}{(1-ax)^2} \cdot \frac{(1-ax)^2}{(1-ax)^2 + (a+x)^2} \] ### Step 6: Final simplification The \((1-ax)^2\) cancels out: \[ \frac{dy}{dx} = \frac{1 + a^2}{(1-ax)^2 + (a+x)^2} \] ### Final Result Thus, the final result for \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = \frac{1 + a^2}{1 + x^2 + a^2} \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y=tan ^(-1) ((a-x) /(1+x^(2))),then (dy)/(dx) =

If y=tan ^(-1) ((x-a)/( x+a)),then (dy)/(dx)=

If y=tan ^(-1) sqrt(( a-x)/( a+x)) ,then (dy)/(dx) =

If y=tan^(-1)((1+x)/(1-x)) then (dy)/(dx)=

if y=tan^(-1)((cos x)/(1+sin x)) then (dy)/(dx)

If y=tan^(-1)((1+cos x)/(sin x)),then(dy)/(dx)=

If y=tan ^(-1) (sqrt( 1+x^(2)) +x ),then (dy)/(dx) =

If y=tan ^(-1) (sqrt( 1+x^(2))-x),then ( dy)/(dx)=

If y=tan^(-1) ((cos x)/(1-sin x)),"then " dy/dx=

If y=tan^(-1) ((sin x)/(1-cos x)),"then " dy/dx=