Home
Class 12
MATHS
If y=tan ^(-1) ((log (ex))/( log ((e)/(...

If ` y=tan ^(-1) ((log (ex))/( log ((e)/( x)))) ,then (dy)/(dx) =`

A

` (1)/( x( 1+(log x) ^(2)))`

B

` (-1)/( x( 1+(log x) ^(2)))`

C

` (x)/( x( 1+(log x) ^(2)))`

D

` (-x)/( x( 1+(log x) ^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to differentiate the function given by: \[ y = \tan^{-1} \left( \frac{\log e x}{\log \frac{e}{x}} \right) \] ### Step 1: Simplify the expression inside the arctangent Using the properties of logarithms, we can simplify the expression: 1. The numerator: \[ \log e x = \log e + \log x = 1 + \log x \] (since \(\log e = 1\)) 2. The denominator: \[ \log \frac{e}{x} = \log e - \log x = 1 - \log x \] Thus, we can rewrite \(y\) as: \[ y = \tan^{-1} \left( \frac{1 + \log x}{1 - \log x} \right) \] ### Step 2: Use the tangent addition formula Next, we can express this in terms of a tangent function: \[ y = \tan^{-1} \left( \frac{\tan \frac{\pi}{4} + \tan \theta}{1 - \tan \frac{\pi}{4} \tan \theta} \right) \] where \(\theta = \tan^{-1}(\log x)\). This follows from the identity: \[ \tan(a + b) = \frac{\tan a + \tan b}{1 - \tan a \tan b} \] Thus, we have: \[ y = \tan^{-1} \left( \tan \left( \frac{\pi}{4} + \tan^{-1}(\log x) \right) \right) \] ### Step 3: Simplify further Since \(\tan^{-1}(\tan z) = z\) for \(z\) in the principal range, we can simplify \(y\) to: \[ y = \frac{\pi}{4} + \tan^{-1}(\log x) \] ### Step 4: Differentiate \(y\) Now, we differentiate \(y\) with respect to \(x\): \[ \frac{dy}{dx} = 0 + \frac{d}{dx} \left( \tan^{-1}(\log x) \right) \] Using the chain rule: \[ \frac{d}{dx} \left( \tan^{-1}(u) \right) = \frac{1}{1 + u^2} \cdot \frac{du}{dx} \] where \(u = \log x\). ### Step 5: Calculate \(\frac{du}{dx}\) We know: \[ \frac{du}{dx} = \frac{d}{dx}(\log x) = \frac{1}{x} \] ### Step 6: Substitute back into the derivative Now substituting back, we have: \[ \frac{dy}{dx} = \frac{1}{1 + (\log x)^2} \cdot \frac{1}{x} \] ### Final Result Thus, the derivative is: \[ \frac{dy}{dx} = \frac{1}{x(1 + (\log x)^2)} \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If e^(x-y) =log ((x)/(y)),then (dy)/(dx) =

If y =log (log x) then (dy)/(dx) =

If y=tan ^(-1) ((log ( (e)/( x^(3))) )/( log ( ex^(3)) ) ),then (dy)/(dx) =

y=log(x/(1+bx)) then (dy)/(dx)

If y= e^(log (log x )) ,then (dy)/(dx) =

If log (x+y) =log (xy ) +a, then (dy)/(dx) =

If y=log _(e^(x) ) (log x ),then (dy)/(dx)

If y=log(e^(x^2)) , then dy/dx=?

If y=log (log ( log x)) ,then (dy)/(dx)

If y=e^(log_(e)x)," then "(dy)/(dx)=