Home
Class 12
MATHS
If the inverse function of y=f(x) is x=g...

If the inverse function of` y=f(x)` is` x=g(y) `and `f'(x) = 1/(1+x^2)` , then prove that, `g'(x)=1 + [g(x)]^2`.

A

` ( 1+f(x))^(2)`

B

` ( 1+g(x))^(2)`

C

` 1+(f(x))^(2)`

D

` 1+(g(x))^(2)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If the inverse function ofy =f(x) is x=g(y) and f'(x)=(1)/(1+x^(2)), then prove that,g'(x)=1+[g(x)]^(2)

If g(x) is the inverse function of f(x) and f'(x)=(1)/(1+x^(4)) , then g'(x) is

If g is the inverse of a function f and f'(x) = 1/(1+x^(5)) , then g'(x) is equal to

If g(x) is inverse function of f(x)=x^(3)+3x-3 then g'(1)=

If g is the inverse function of and f'(x) = sin x then prove that g'(x) = cosec (g(x))

Let g(x) be the inverse of the function f(x) ,and f'(x) 1/(1+ x^(3)) then g(x) equals

If g is the inverse of f and f'(x) = (1)/(1 + x^(2)) , then g'(x) is equal to

Let g(x) be the inverse of the function f(x) and f'(x)=(1)/(1+x^(3)) then g'(x) equals