Home
Class 12
MATHS
If y= (tan x )^(sin x ) ,then (dy)/(dx)...

If ` y= (tan x )^(sin x ) ,then (dy)/(dx)=`

A

` y( sec ^(2)x +cos x )log (tan x )) `

B

` y(sec ^(2) x-(cosx) log (tan x) ) `

C

` y(sec x+(cosx) log (tan x) ) `

D

` y(sec x-(cosx) log (tan x) ) `

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of \( y = (\tan x)^{\sin x} \), we will use logarithmic differentiation. Here’s a step-by-step solution: ### Step 1: Take the natural logarithm of both sides We start by taking the natural logarithm of both sides to simplify the differentiation process. \[ \ln y = \ln((\tan x)^{\sin x}) \] ### Step 2: Apply the logarithmic power rule Using the property of logarithms, \( \ln(a^b) = b \ln a \), we can rewrite the right-hand side: \[ \ln y = \sin x \cdot \ln(\tan x) \] ### Step 3: Differentiate both sides Now we differentiate both sides with respect to \( x \). We will use the product rule on the right side, where \( u = \sin x \) and \( v = \ln(\tan x) \). The derivative of \( \ln y \) with respect to \( x \) is: \[ \frac{1}{y} \frac{dy}{dx} \] For the right-hand side, using the product rule: \[ \frac{d}{dx}(\sin x \cdot \ln(\tan x)) = \cos x \cdot \ln(\tan x) + \sin x \cdot \frac{d}{dx}(\ln(\tan x)) \] ### Step 4: Differentiate \( \ln(\tan x) \) Now we need to differentiate \( \ln(\tan x) \): \[ \frac{d}{dx}(\ln(\tan x)) = \frac{1}{\tan x} \cdot \sec^2 x \] Thus, we have: \[ \frac{d}{dx}(\ln(\tan x)) = \frac{\sec^2 x}{\tan x} = \frac{1}{\sin x \cos x} = \csc x \sec x \] ### Step 5: Substitute back into the derivative Now we can substitute this back into our differentiation result: \[ \frac{1}{y} \frac{dy}{dx} = \cos x \cdot \ln(\tan x) + \sin x \cdot \csc x \sec x \] ### Step 6: Simplify the equation Since \( \sin x \cdot \csc x = 1 \), we can simplify the equation: \[ \frac{1}{y} \frac{dy}{dx} = \cos x \cdot \ln(\tan x) + \sec x \] ### Step 7: Solve for \( \frac{dy}{dx} \) Now, multiply both sides by \( y \): \[ \frac{dy}{dx} = y \left( \cos x \cdot \ln(\tan x) + \sec x \right) \] ### Step 8: Substitute back for \( y \) Recall that \( y = (\tan x)^{\sin x} \): \[ \frac{dy}{dx} = (\tan x)^{\sin x} \left( \cos x \cdot \ln(\tan x) + \sec x \right) \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = (\tan x)^{\sin x} \left( \cos x \cdot \ln(\tan x) + \sec x \right) \] ---
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

y=x^(x sin x) then (dy)/(dx)

If y = (tan x)^(x) , then (dy)/(dx) =

If y = (tan x)^(cot x) " then " (dy)/(dx)= ?

If y=e^(tan x(ln sin x)) then (dy)/(dx) is equal to

If y= x^(sin x) +(sin x)^(x) ,then (dy)/(dx) =

If y=x^(tan ^(-1)x) ,then (dy)/(dx)=

if y=tan(sin^(-1)x) then (dy)/(dx)

If y= sin (cos (tan x)) ,then (dy)/(dx) =

if y+x=sin(y+x) then (dy)/(dx)

If (x+y)=sin(x+y) then (dy)/(dx)=