Home
Class 12
MATHS
If y=x^(tan ^(-1)x) ,then (dy)/(dx)=...

If ` y=x^(tan ^(-1)x)` ,then `(dy)/(dx)=`

A

` y(( tan ^(-1) x)/( x ) +(logx )/( 1+x^(2)))`

B

` y(( tan ^(-1) x)/( x ) -(logx )/( 1+x^(2)))`

C

`( y)/(2) (( tan ^(-1) x)/( x ) +(logx )/( 1+x^(2)))`

D

`( y)/(2) (( tan ^(-1) x)/( x ) -(logx )/( 1+x^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = x^{\tan^{-1}(x)} \), we will use logarithmic differentiation. Here’s the step-by-step solution: ### Step 1: Take the natural logarithm of both sides We start by taking the natural logarithm of both sides of the equation: \[ \ln(y) = \ln(x^{\tan^{-1}(x)}) \] ### Step 2: Apply the logarithmic power rule Using the property of logarithms that states \( \ln(a^b) = b \cdot \ln(a) \), we can rewrite the right side: \[ \ln(y) = \tan^{-1}(x) \cdot \ln(x) \] ### Step 3: Differentiate both sides with respect to \( x \) Now we differentiate both sides. For the left side, we use implicit differentiation: \[ \frac{1}{y} \cdot \frac{dy}{dx} = \frac{d}{dx}(\tan^{-1}(x) \cdot \ln(x)) \] ### Step 4: Apply the product rule on the right side To differentiate the right side, we apply the product rule: \[ \frac{d}{dx}(\tan^{-1}(x) \cdot \ln(x)) = \tan^{-1}(x) \cdot \frac{d}{dx}(\ln(x)) + \ln(x) \cdot \frac{d}{dx}(\tan^{-1}(x)) \] Calculating the derivatives: - The derivative of \( \ln(x) \) is \( \frac{1}{x} \). - The derivative of \( \tan^{-1}(x) \) is \( \frac{1}{1+x^2} \). So we have: \[ \frac{d}{dx}(\tan^{-1}(x) \cdot \ln(x)) = \tan^{-1}(x) \cdot \frac{1}{x} + \ln(x) \cdot \frac{1}{1+x^2} \] ### Step 5: Substitute back into the equation Substituting back, we get: \[ \frac{1}{y} \cdot \frac{dy}{dx} = \tan^{-1}(x) \cdot \frac{1}{x} + \ln(x) \cdot \frac{1}{1+x^2} \] ### Step 6: Solve for \( \frac{dy}{dx} \) Now, we multiply both sides by \( y \): \[ \frac{dy}{dx} = y \left( \tan^{-1}(x) \cdot \frac{1}{x} + \ln(x) \cdot \frac{1}{1+x^2} \right) \] ### Step 7: Substitute \( y \) back into the equation Recall that \( y = x^{\tan^{-1}(x)} \): \[ \frac{dy}{dx} = x^{\tan^{-1}(x)} \left( \tan^{-1}(x) \cdot \frac{1}{x} + \ln(x) \cdot \frac{1}{1+x^2} \right) \] ### Final Result Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = x^{\tan^{-1}(x)} \left( \frac{\tan^{-1}(x)}{x} + \frac{\ln(x)}{1+x^2} \right) \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y/x=tan^(-1)(x/y) then (dy)/(dx)=

if y=tan(sin^(-1)x) then (dy)/(dx)

If y=tan^(-1)x ,then (dy)/(dx) is

If y = (tan x)^(x) , then (dy)/(dx) =

If y= (tan x )^(sin x ) ,then (dy)/(dx)=

If y=(1+x^(2))tan^(-1) x-x , then (dy)/(dx) is equal to

If y= sec (tan^(-1)x)," then "(dy)/(dx)" at " x = 1 is equal to