Home
Class 12
MATHS
If y=x^(sin x)+ sqrt(x) ,then " at "=(p...

If ` y=x^(sin x)+ sqrt(x) ,then " at "=(pi)/( 2), (dy)/(dx)=`

A

` 1+ (1)/ (sqrt(2pi))`

B

` 1-(1)/( sqrt(2pi)) `

C

` 1`

D

` (1)/( sqrt( 2pi))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivative of the function \( y = x^{\sin x} + \sqrt{x} \) and then evaluate it at \( x = \frac{\pi}{2} \). ### Step-by-Step Solution: 1. **Differentiate \( y \)**: We have: \[ y = x^{\sin x} + \sqrt{x} \] We need to find \( \frac{dy}{dx} \). 2. **Differentiate \( x^{\sin x} \)**: To differentiate \( x^{\sin x} \), we can use logarithmic differentiation. Let: \[ z = x^{\sin x} \] Taking the natural logarithm of both sides: \[ \ln z = \sin x \cdot \ln x \] Now differentiate both sides with respect to \( x \): \[ \frac{1}{z} \frac{dz}{dx} = \cos x \cdot \ln x + \sin x \cdot \frac{1}{x} \] Rearranging gives: \[ \frac{dz}{dx} = z \left( \cos x \cdot \ln x + \frac{\sin x}{x} \right) \] Substituting back \( z = x^{\sin x} \): \[ \frac{dz}{dx} = x^{\sin x} \left( \cos x \cdot \ln x + \frac{\sin x}{x} \right) \] 3. **Differentiate \( \sqrt{x} \)**: The derivative of \( \sqrt{x} \) is: \[ \frac{d}{dx}(\sqrt{x}) = \frac{1}{2\sqrt{x}} \] 4. **Combine the derivatives**: Now, we can combine the derivatives to find \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{dz}{dx} + \frac{d}{dx}(\sqrt{x}) = x^{\sin x} \left( \cos x \cdot \ln x + \frac{\sin x}{x} \right) + \frac{1}{2\sqrt{x}} \] 5. **Evaluate \( \frac{dy}{dx} \) at \( x = \frac{\pi}{2} \)**: Now we substitute \( x = \frac{\pi}{2} \): - First, calculate \( \sin\left(\frac{\pi}{2}\right) = 1 \) and \( \cos\left(\frac{\pi}{2}\right) = 0 \). - Therefore: \[ \frac{dy}{dx} \bigg|_{x = \frac{\pi}{2}} = \left(\frac{\pi}{2}\right)^{1} \left(0 \cdot \ln\left(\frac{\pi}{2}\right) + \frac{1}{\frac{\pi}{2}}\right) + \frac{1}{2\sqrt{\frac{\pi}{2}}} \] Simplifying this: \[ = \frac{\pi}{2} \cdot \frac{2}{\pi} + \frac{1}{2\sqrt{\frac{\pi}{2}}} \] \[ = 1 + \frac{1}{2} \cdot \frac{1}{\sqrt{\frac{\pi}{2}}} = 1 + \frac{1}{\sqrt{2\pi}} \] 6. **Final Answer**: Therefore, the value of \( \frac{dy}{dx} \) at \( x = \frac{\pi}{2} \) is: \[ \frac{dy}{dx} \bigg|_{x = \frac{\pi}{2}} = 1 + \frac{1}{\sqrt{2\pi}} \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y=cos(sin x^(2)) then at x=sqrt((pi)/(2)),(dy)/(dx)=

If y=cos(sinx^2) ,then at x=sqrt((pi)/(2)) , (dy)/(dx)=

If y=sin^(-1)(sin x), then (dy)/(dx) at x=(pi)/(2) is

If y= sin sqrt ( sin sqrt x) ,then (dy)/( dx) =

If y= (a^(sqrt x) ) ^(sin x) ,then (dy)/(dx) =

If y=e^(sin x) ,the value of (dy)/(dx) at x=(pi)/(2) is

If y = log (sin (x^(2))), 0 lt x lt (pi)/(2), "then " (dy)/(dx) "at x " = (sqrt(pi))/(2) is

If y=3x^(3)sin^(-1)x+(x^(2)+2)sqrt(1-x^(2)), then (dy)/(dx)=

If y=(sin x)^(x)+sin^(-1)sqrt(1-x^(2)) then find (dy)/(dx)