Home
Class 12
MATHS
If y=(sin x)^(tan x)+ (cosx) ^(secx) ,t...

If ` y=(sin x)^(tan x)+ (cosx) ^(secx) ,then (dy)/(dx)`

A

` (sin x)^(tan x) (1+log (sin x) sec^(2)x) + (cos x)^(secx) secx tan x (log (cosx )+ 1)`

B

` (sin x)^(tan x) (1-log (sin x) sec^(2)x) + (cos x)^(secx) secx tan x (log (cosx )- 1)`

C

` (sin x)^(tan x) (1-log (sin x) sec^(2)x) + (cos x)^(secx) secx tan x (log (cosx )+ 1)`

D

` (sin x)^(tan x) (1+log (sin x) sec^(2)x) + (cos x)^(secx) secx tan x (log (cosx )- 1)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = (\sin x)^{\tan x} + (\cos x)^{\sec x} \), we will break it down into two parts and apply the logarithmic differentiation method. ### Step-by-step Solution: 1. **Identify the parts of the function**: Let \( u = (\sin x)^{\tan x} \) and \( v = (\cos x)^{\sec x} \). Thus, we can write: \[ y = u + v \] 2. **Differentiate \( u \)**: To differentiate \( u \), we will use logarithmic differentiation. \[ \log u = \tan x \cdot \log(\sin x) \] Now, differentiate both sides with respect to \( x \): \[ \frac{1}{u} \frac{du}{dx} = \sec^2 x \cdot \log(\sin x) + \tan x \cdot \frac{\cos x}{\sin x} \] Simplifying, we have: \[ \frac{du}{dx} = u \left( \sec^2 x \cdot \log(\sin x) + \tan x \cdot \cot x \right) \] Since \( u = (\sin x)^{\tan x} \): \[ \frac{du}{dx} = (\sin x)^{\tan x} \left( \sec^2 x \cdot \log(\sin x) + 1 \right) \] 3. **Differentiate \( v \)**: Similarly, for \( v \): \[ \log v = \sec x \cdot \log(\cos x) \] Differentiate both sides: \[ \frac{1}{v} \frac{dv}{dx} = \sec x \cdot \left(-\tan x\right) + \sec^2 x \cdot \log(\cos x) \] Thus, \[ \frac{dv}{dx} = v \left( -\sec x \tan x + \sec^2 x \cdot \log(\cos x) \right) \] Since \( v = (\cos x)^{\sec x} \): \[ \frac{dv}{dx} = (\cos x)^{\sec x} \left( -\sec x \tan x + \sec^2 x \cdot \log(\cos x) \right) \] 4. **Combine the derivatives**: Now we can find \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} \] Substitute \( \frac{du}{dx} \) and \( \frac{dv}{dx} \): \[ \frac{dy}{dx} = (\sin x)^{\tan x} \left( \sec^2 x \cdot \log(\sin x) + 1 \right) + (\cos x)^{\sec x} \left( -\sec x \tan x + \sec^2 x \cdot \log(\cos x) \right) \] 5. **Final expression**: Thus, the final expression for \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = (\sin x)^{\tan x} \left( \sec^2 x \cdot \log(\sin x) + 1 \right) + (\cos x)^{\sec x} \left( -\sec x \tan x + \sec^2 x \cdot \log(\cos x) \right) \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y=(sinx)^(tanx)+(cos x)^(secx) , find (dy)/(dx).

If y = (tan x)^(x) , then (dy)/(dx) =

If y= (tan x )^(sin x ) ,then (dy)/(dx)=

If y = x^(cosx) then find (dy)/(dx)

If y=x^(tan x)+(tan x)^(x) , then find (dy)/(dx)

If y= sin (cos (tan x)) ,then (dy)/(dx) =

"If "y=(sinx)^(cosx)+(cosx)^(sinx)", prove that "(dy)/(dx)=(sinx)^(cosx).[cot x cos x-sin x(log sinx)]+(cosx)^(sinx).[cosx(log cos x)-sinx tanx].

If y = (tan x)^(cot x) " then " (dy)/(dx)= ?

If y= log (secx+tan x ) ,then (dy)/(dx)

y = tan ^ (- 1) ((1-cos x) / (sin x)) then (dy) / (dx)