Home
Class 12
MATHS
If y= ( x+(1)/( x))^(x) +x^((x+( 1)/(x)...

If ` y= ( x+(1)/( x))^(x) +x^((x+( 1)/(x)) ),then (dy)/(dx)=`

A

` (x+(1)/(x))^(x) ((x^(2)-1)/( x^(2)+1) +log (x+(1)/(x))+x^((x+( 1)/(x)) )( (x^(2) +1)/( x^(2))- (( x^(2)-1)/( x^(2)))log x) `

B

` (x+(1)/(x))^(x) ((x^(2)-1)/( x^(2)+1) +log (x+(1)/(x))+x^((x+( 1)/(x)) )( (x^(2) +1)/( x^(2))+ (( x^(2)-1)/( x^(2)))log x) `

C

` (x+(1)/(x))^(x) ((x^(2)-1)/( x^(2)+1) +log (x+(1)/(x))+x^((x+( 1)/(x)) )( (x^(2) +1)/( x)- (( x^(2)-1)/( x^(2)))log x) `

D

` (x+(1)/(x))^(x) ((x^(2)-1)/( x^(2)+1) +log (x+(1)/(x))+x^((x+( 1)/(x)) )( (x^(2) +1)/( x)+ (( x^(2)-1)/( x^(2)))log x) `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will differentiate the function given by: \[ y = \left( x + \frac{1}{x} \right)^x + x^{\left( x + \frac{1}{x} \right)} \] We will break this down into two parts, \( u \) and \( v \): 1. Let \( u = \left( x + \frac{1}{x} \right)^x \) 2. Let \( v = x^{\left( x + \frac{1}{x} \right)} \) Then, we can express \( y \) as: \[ y = u + v \] ### Step 1: Differentiate \( u \) To differentiate \( u \), we will use logarithmic differentiation. Taking the natural logarithm of both sides: \[ \ln u = x \ln \left( x + \frac{1}{x} \right) \] Now, differentiate both sides with respect to \( x \): Using the product rule on the right side: \[ \frac{1}{u} \frac{du}{dx} = \ln \left( x + \frac{1}{x} \right) + x \cdot \frac{1}{x + \frac{1}{x}} \left( 1 - \frac{1}{x^2} \right) \] Now, simplify: \[ \frac{du}{dx} = u \left( \ln \left( x + \frac{1}{x} \right) + \frac{x \left( 1 - \frac{1}{x^2} \right)}{x + \frac{1}{x}} \right) \] Substituting back for \( u \): \[ \frac{du}{dx} = \left( x + \frac{1}{x} \right)^x \left( \ln \left( x + \frac{1}{x} \right) + \frac{x \left( 1 - \frac{1}{x^2} \right)}{x + \frac{1}{x}} \right) \] ### Step 2: Differentiate \( v \) Now, we differentiate \( v \): Taking the natural logarithm: \[ \ln v = \left( x + \frac{1}{x} \right) \ln x \] Differentiating both sides: \[ \frac{1}{v} \frac{dv}{dx} = \left( 1 - \frac{1}{x^2} \right) \ln x + \left( x + \frac{1}{x} \right) \cdot \frac{1}{x} \] Now, simplifying gives: \[ \frac{dv}{dx} = v \left( \left( 1 - \frac{1}{x^2} \right) \ln x + \frac{x + \frac{1}{x}}{x} \right) \] Substituting back for \( v \): \[ \frac{dv}{dx} = x^{\left( x + \frac{1}{x} \right)} \left( \left( 1 - \frac{1}{x^2} \right) \ln x + \frac{x + \frac{1}{x}}{x} \right) \] ### Step 3: Combine the derivatives Now, we can combine the derivatives to find \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} \] Substituting the expressions we derived for \( \frac{du}{dx} \) and \( \frac{dv}{dx} \): \[ \frac{dy}{dx} = \left( x + \frac{1}{x} \right)^x \left( \ln \left( x + \frac{1}{x} \right) + \frac{x \left( 1 - \frac{1}{x^2} \right)}{x + \frac{1}{x}} \right) + x^{\left( x + \frac{1}{x} \right)} \left( \left( 1 - \frac{1}{x^2} \right) \ln x + \frac{x + \frac{1}{x}}{x} \right) \] ### Final Result Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \left( x + \frac{1}{x} \right)^x \left( \ln \left( x + \frac{1}{x} \right) + \frac{x \left( 1 - \frac{1}{x^2} \right)}{x + \frac{1}{x}} \right) + x^{\left( x + \frac{1}{x} \right)} \left( \left( 1 - \frac{1}{x^2} \right) \ln x + \frac{x + \frac{1}{x}}{x} \right) \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y= x^((1)/(x)) ,then (dy)/(dx)=

If y= 7^(x+(1)/(x) ),then (dy)/(dx) =

y=(1+x)/(1-x) then (dy)/(dx)

If y= (xcos x) ^(x) +(xsin x)^((1)/(x)),then (dy)/(dx) =

If y=x^(tan ^(-1)x) ,then (dy)/(dx)=

If y=((x+1)/(x))^(x)," then "(dy)/(dx)=

If y=(1+1/x)^x,then(dy)/(dx)=

If y=x+(1)/(x+(1)/(x)) then (dy)/(dx) is

If y= sqrt (x+(1)/( x) ),then (dy)/(dx) =

If y=(x+(1)/(x))^(x)+(x^(2)+1)/(x^(2)-1), find (dy)/(dx)