Home
Class 12
MATHS
If y= x^(sin x) +(sin x)^(x) ,then (dy)...

If ` y= x^(sin x) +(sin x)^(x) ,then (dy)/(dx) =`

A

` x^(sinx ) ((cosx )( log x) -(sin x)/( x )) + (sin x)^(x) (log sin x -xcot x ) `

B

` x^(sinx ) ((cosx )( log x) +(sin x)/( x )) + (sin x)^(x) (log sin x +xcot x ) `

C

` x^(sinx ) ((cosx )( log x) -(sin x)/( x )) - (sin x)^(x) (log sin x +xcot x ) `

D

` x^(sinx ) ((cosx )( log x) +(sin x)/( x )) + (sin x)^(x) (log sin x -xcot x ) `

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) for the function \( y = x^{\sin x} + (\sin x)^x \), we will differentiate each part of the function separately. ### Step-by-Step Solution 1. **Identify the function**: \[ y = x^{\sin x} + (\sin x)^x \] 2. **Differentiate the first term \( x^{\sin x} \)**: - Let \( u = x^{\sin x} \). - Take the natural logarithm of both sides: \[ \ln u = \sin x \cdot \ln x \] - Differentiate both sides using implicit differentiation: \[ \frac{1}{u} \frac{du}{dx} = \cos x \cdot \ln x + \sin x \cdot \frac{1}{x} \] - Multiply both sides by \( u \): \[ \frac{du}{dx} = u \left( \cos x \cdot \ln x + \frac{\sin x}{x} \right) \] - Substitute \( u = x^{\sin x} \): \[ \frac{du}{dx} = x^{\sin x} \left( \cos x \cdot \ln x + \frac{\sin x}{x} \right) \] 3. **Differentiate the second term \( (\sin x)^x \)**: - Let \( v = (\sin x)^x \). - Take the natural logarithm of both sides: \[ \ln v = x \cdot \ln(\sin x) \] - Differentiate both sides: \[ \frac{1}{v} \frac{dv}{dx} = \ln(\sin x) + x \cdot \frac{\cos x}{\sin x} \] - Multiply both sides by \( v \): \[ \frac{dv}{dx} = v \left( \ln(\sin x) + x \cdot \cot x \right) \] - Substitute \( v = (\sin x)^x \): \[ \frac{dv}{dx} = (\sin x)^x \left( \ln(\sin x) + x \cdot \cot x \right) \] 4. **Combine the derivatives**: - Now, we can find \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} \] - Substitute the expressions for \( \frac{du}{dx} \) and \( \frac{dv}{dx} \): \[ \frac{dy}{dx} = x^{\sin x} \left( \cos x \cdot \ln x + \frac{\sin x}{x} \right) + (\sin x)^x \left( \ln(\sin x) + x \cdot \cot x \right) \] ### Final Result Thus, the derivative \( \frac{dy}{dx} \) is given by: \[ \frac{dy}{dx} = x^{\sin x} \left( \cos x \cdot \ln x + \frac{\sin x}{x} \right) + (\sin x)^x \left( \ln(\sin x) + x \cdot \cot x \right) \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y= 2 ^(sin x) -sin ^(2)x ,then (dy)/(dx) =

If y=e^(x)+(sin x)^(x) , then (dy)/(dx) = ?

If y= (a^(sqrt x) ) ^(sin x) ,then (dy)/(dx) =

If y=(xcos x-sin x)^(x) ,then (dy)/(dx) =

y=x^(x sin x) then (dy)/(dx)

y=x^(sinx)+(sin x)^(cos x), then find (dy)/(dx)

If y = sin (x^(x)) " then " (dy)/(dx) = ?

If y=[sin x]^(y) then (dy)/(dx)

If y=x^(sin x)+sin(x^(x)), find (dy)/(dx)

if y=(sin x)^(cos x). Then (dy)/(dx)=