Home
Class 12
MATHS
If y=( log x )^(x) -x^(log x) ,then (dy...

If ` y=( log x )^(x) -x^(log x) ,then (dy)/(dx)=`

A

` (log x )^(x) ((1)/( logx ) + log (log x ) )+ ((log x)x^(log x))/( x ) `

B

` (log x )^(x) ((1)/( logx ) + log (log x ) )-((log x)x^(log x))/( x ) `

C

` (log x )^(x) ((1)/( logx ) + log (log x ) )+ (2(log x)x^(log x))/( x ) `

D

` (log x )^(x) ((1)/( logx ) + log (log x ) )- (2(log x)x^(log x))/( x ) `

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = (\log x)^x - x^{\log x} \), we will differentiate each term separately. ### Step 1: Differentiate \( y = (\log x)^x \) Let \( a = (\log x)^x \). Taking the logarithm of both sides: \[ \log a = x \log(\log x) \] Now, differentiate both sides with respect to \( x \): \[ \frac{1}{a} \frac{da}{dx} = \log(\log x) + x \cdot \frac{1}{\log x} \cdot \frac{1}{x} \] Here, we used the product rule for differentiation on \( x \log(\log x) \). This simplifies to: \[ \frac{1}{a} \frac{da}{dx} = \log(\log x) + \frac{1}{\log x} \] Now, multiplying both sides by \( a \): \[ \frac{da}{dx} = a \left( \log(\log x) + \frac{1}{\log x} \right) \] Substituting back \( a = (\log x)^x \): \[ \frac{da}{dx} = (\log x)^x \left( \log(\log x) + \frac{1}{\log x} \right) \] ### Step 2: Differentiate \( y = x^{\log x} \) Let \( b = x^{\log x} \). Taking the logarithm of both sides: \[ \log b = \log x \cdot \log x = (\log x)^2 \] Now, differentiate both sides with respect to \( x \): \[ \frac{1}{b} \frac{db}{dx} = 2 \log x \cdot \frac{1}{x} \] This simplifies to: \[ \frac{1}{b} \frac{db}{dx} = \frac{2 \log x}{x} \] Now, multiplying both sides by \( b \): \[ \frac{db}{dx} = b \cdot \frac{2 \log x}{x} \] Substituting back \( b = x^{\log x} \): \[ \frac{db}{dx} = x^{\log x} \cdot \frac{2 \log x}{x} = 2 \log x \cdot x^{\log x - 1} \] ### Step 3: Combine the derivatives Now we can find \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{da}{dx} - \frac{db}{dx} \] Substituting the expressions we found: \[ \frac{dy}{dx} = (\log x)^x \left( \log(\log x) + \frac{1}{\log x} \right) - 2 \log x \cdot x^{\log x - 1} \] ### Final Result Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = (\log x)^x \left( \log(\log x) + \frac{1}{\log x} \right) - 2 \log x \cdot x^{\log x - 1} \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y=log _(e^(x) ) (log x ),then (dy)/(dx)

If y=(log x)^(x)+(x)^(cos x), then find (dy)/(dx)

If y=log (log ( log x)) ,then (dy)/(dx)

If y = x^(2) + x^(log x) , then (dy)/(dx) is

If y = e^(log (log x ))log3 x,then (dy)/(dx)

If y=x^((log x)^(log(log x))then(dy)/(dx))=

If y = x^(log x) , then (dy)/(dx) equals

If y=log x^(x), then (dy)/(dx)=

If y =log (log x) then (dy)/(dx) =