Home
Class 12
MATHS
If x+sqrt( xy)+ y=1 ,then (dy)/(dx)=...

If ` x+sqrt( xy)+ y=1 ,then (dy)/(dx)=`

A

` (2sqrt( xy)+x)/( 2sqrt(xy) +y)`

B

` (2sqrt( xy)+y)/( 2sqrt(xy) +x)`

C

` -((2sqrt( xy)+x)/( 2sqrt(xy) +y))`

D

` -((2sqrt( xy)+y)/( 2sqrt(xy) +x))`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the equation \(x + \sqrt{xy} + y = 1\), we will differentiate both sides of the equation with respect to \(x\). Let's go through the steps systematically. ### Step 1: Rearranging the Equation We start with the equation: \[ x + \sqrt{xy} + y = 1 \] We can rearrange it for easier differentiation: \[ \sqrt{xy} = 1 - x - y \] ### Step 2: Differentiate Both Sides Now we differentiate both sides with respect to \(x\): \[ \frac{d}{dx}(x) + \frac{d}{dx}(\sqrt{xy}) + \frac{d}{dx}(y) = \frac{d}{dx}(1) \] The derivative of \(1\) is \(0\). So we have: \[ 1 + \frac{d}{dx}(\sqrt{xy}) + \frac{dy}{dx} = 0 \] ### Step 3: Differentiate \(\sqrt{xy}\) To differentiate \(\sqrt{xy}\), we use the product rule. Let \(u = x\) and \(v = y\): \[ \frac{d}{dx}(\sqrt{xy}) = \frac{1}{2\sqrt{xy}} \cdot \frac{d}{dx}(xy) \] Using the product rule on \(xy\): \[ \frac{d}{dx}(xy) = x\frac{dy}{dx} + y \] Thus, \[ \frac{d}{dx}(\sqrt{xy}) = \frac{1}{2\sqrt{xy}}(x\frac{dy}{dx} + y) \] ### Step 4: Substitute Back Now substitute back into our differentiated equation: \[ 1 + \frac{1}{2\sqrt{xy}}(x\frac{dy}{dx} + y) + \frac{dy}{dx} = 0 \] ### Step 5: Isolate \(\frac{dy}{dx}\) Combine the terms involving \(\frac{dy}{dx}\): \[ 1 + \frac{y}{2\sqrt{xy}} + \left(\frac{x}{2\sqrt{xy}} + 1\right)\frac{dy}{dx} = 0 \] Rearranging gives: \[ \left(\frac{x}{2\sqrt{xy}} + 1\right)\frac{dy}{dx} = -\left(1 + \frac{y}{2\sqrt{xy}}\right) \] Now, isolate \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = -\frac{1 + \frac{y}{2\sqrt{xy}}}{\frac{x}{2\sqrt{xy}} + 1} \] ### Step 6: Simplifying the Expression To simplify, multiply the numerator and denominator by \(2\sqrt{xy}\): \[ \frac{dy}{dx} = -\frac{2\sqrt{xy} + y}{x + 2\sqrt{xy}} \] ### Final Result Thus, the final expression for \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = -\frac{2\sqrt{xy} + y}{x + 2\sqrt{xy}} \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If sqrt(xy)=1," then "(dy)/(dx)=

If x=sqrt(1-y^2) , then (dy)/(dx)=

If cos (xy) =x+ y ,then (dy)/(dx)=

If y= sqrt (x+(1)/( x) ),then (dy)/(dx) =

If cos (xy) =sin (x+y) ,then (dy)/(dx)

If y= sqrt(x-1) +sqrt( x+1) ,then (dy)/(dx)

If y=sqrt(1+x^(2)) then (dy)/(dx) =

If y= (sqrt( x) +(1)/(sqrt(x)) ) ^(5) , then (dy)/(dx) =

If sec (x+y) = xy, then find (dy)/(dx)

If e^(x +y) = xy " then " (dy)/(dx)= ?