Home
Class 12
MATHS
If x= y sqrt( 1-y^(2)) ,then (dy)/(dx)...

If ` x= y sqrt( 1-y^(2)) ,then (dy)/(dx) `

A

` (sqrt( 1-y^(2)))/( 1+2y ^(2))`

B

` (sqrt(1-y^(2)))/( 1-2y ^(2))`

C

` 0`

D

`x`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) given the equation \(x = y \sqrt{1 - y^2}\), we can follow these steps: ### Step 1: Square both sides Start by squaring both sides of the equation to eliminate the square root. \[ x^2 = (y \sqrt{1 - y^2})^2 \] This simplifies to: \[ x^2 = y^2 (1 - y^2) \] ### Step 2: Expand the equation Now, expand the right-hand side: \[ x^2 = y^2 - y^4 \] ### Step 3: Rearrange the equation Rearranging gives us: \[ x^2 + y^4 - y^2 = 0 \] ### Step 4: Differentiate both sides Now, differentiate both sides with respect to \(x\): \[ \frac{d}{dx}(x^2) + \frac{d}{dx}(y^4) - \frac{d}{dx}(y^2) = 0 \] Using the chain rule, we differentiate: \[ 2x + 4y^3 \frac{dy}{dx} - 2y \frac{dy}{dx} = 0 \] ### Step 5: Factor out \(\frac{dy}{dx}\) Now, we can factor out \(\frac{dy}{dx}\): \[ 2x + (4y^3 - 2y) \frac{dy}{dx} = 0 \] ### Step 6: Solve for \(\frac{dy}{dx}\) Rearranging gives: \[ (4y^3 - 2y) \frac{dy}{dx} = -2x \] Now, divide both sides by \((4y^3 - 2y)\): \[ \frac{dy}{dx} = \frac{-2x}{4y^3 - 2y} \] ### Step 7: Simplify the expression We can simplify this further: \[ \frac{dy}{dx} = \frac{-x}{2y^3 - y} \] ### Step 8: Substitute for \(x/y\) Recall that \(x = y \sqrt{1 - y^2}\), so: \[ \frac{dy}{dx} = \frac{-y \sqrt{1 - y^2}}{2y^3 - y} \] ### Step 9: Final expression Thus, we can express \(\frac{dy}{dx}\) as: \[ \frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{1 - 2y^2} \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y=sqrt(1+x^(2)) then (dy)/(dx) =

If x=sqrt(1-y^2) , then (dy)/(dx)=

If y=cos ^(-1) sqrt(1+x^(2)),then (dy)/(dx) =

If y=sin ^(-1)sqrt (1-x^(2)),then (dy)/(dx)=

If y= sqrt (x+(1)/( x) ),then (dy)/(dx) =

If (x+sqrt(1+x^(2))) (y+sqrt(1+y^(2))) =1 then (dy)/(dx) may be equals to

If y = sqrt(sin x + y), then (dy)/(dx)=

If y=tan ^(-1) (sqrt( 1+x^(2)) +x ),then (dy)/(dx) =

If y=sqrt(cos x+y), then (dy)/(dx)=