Home
Class 12
MATHS
xsqrt(1+y)+ysqrt(1+x)=0 then (dy)/(dx)=...

`xsqrt(1+y)+ysqrt(1+x)=0` then `(dy)/(dx)=`

A

` 1+x `

B

` (1+x)^(-2)`

C

` -( 1+x)^(-1)`

D

` -(1+x) ^(-2)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y= xsqrt(x) then (dy)/(dx) =?

If x sqrt(1+y)+y sqrt(1+x)=0, find (dy)/(dx)* To prove (dy)/(dx)=-(1)/((1+x)^(2))

If y=sin ^(-1) (xsqrt( 1-x) +sqrt(x) sqrt (1-x^(2))),then (dy)/(dx)=

If xsqrt(y)+ysqrt(x)=1"then"(dy)/(dx) equals -

x sqrt(1+y)+y sqrt(1+x)=0 for, for,(dy)/(dx)=-(1)/((1+x)^(2))

If x=ysqrt(1-y^(2)) , then (dy)/(dx)=

y=(1+x)/(1-x) then (dy)/(dx)

If x sqrt(1+y)+y sqrt(1+x)=0, prove that (dy)/(dx)=-(1)/((x+1)^(2))

If x sqrt(y+1)+y sqrt(x+1)=0 & x!=y, then (dy)/(dx)=