Home
Class 12
MATHS
If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), t...

If `sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y)`, then `(dy)/(dx)` equals

A

` sqrt((1-x^(2))/( 1-y^(2))) `

B

` -sqrt((1-x^(2))/( 1-y^(2))) `

C

` sqrt((1-y^(2))/( 1-x^(2))) `

D

` -sqrt((1-y^(2))/( 1-x^(2))) `

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If sqrt(1-x^(2))+sqrt(1-y^(2))=a , then what is (dy)/(dx) equal to?

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), prove that (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), prove that (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If (x+sqrt(1+x^(2))) (y+sqrt(1+y^(2))) =1 then (dy)/(dx) may be equals to

sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), provethat (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If y=sqrt((1-x)/(1+x)), then (dy)/(dx) equals-