Home
Class 12
MATHS
If ysqrt(1-x^(2)) +xsqrt( 1-y^(2)) =1,t...

If ` ysqrt(1-x^(2)) +xsqrt( 1-y^(2)) =1,then (dy)/(dx)=`

A

` sqrt( ( 1-y^(2))/(1-x^(2)))`

B

` -sqrt( ( 1-y^(2))/(1-x^(2)))`

C

` sqrt( ( 1-x^(2))/(1-y^(2)))`

D

` -sqrt( ( 1-x^(2))/(1-y^(2)))`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If x=ysqrt(1-y^(2)) , then (dy)/(dx)=

ysqrt(1-x^(2)) dy + x sqrt(1-y^(2)) dx=0

ysqrt(1-x^(2))+xsqrt(1-y^(2))=1,"show that "(dy)/(dx)=-sqrt((1-y^(2))/(1-x^(2)))

If y=sin ^(-1) (xsqrt( 1-x) +sqrt(x) sqrt (1-x^(2))),then (dy)/(dx)=

xsqrt(1+y)+ysqrt(1+x)=0 then (dy)/(dx)=

If y=log((1-x^(2))/(1+x^(2)))," then "(dy)/(dx)=

If y =sin ^(-1) sqrt((1+x^(2))/( 2) ),then (dy)/(dx) =

xsqrt(1+y)+ysqrt(1+x)=0 , then (dy)/(dx)=

If y= xsqrt(x) then (dy)/(dx) =?