Home
Class 12
MATHS
If x^(4)y^(5) =(x+y) ^(m+1) and (dy)/(d...

If ` x^(4)y^(5) =(x+y) ^(m+1) and (dy)/(dx) =(y)/(x) ,then m=`

A

8

B

4

C

5

D

20

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation and the derivative condition. ### Step-by-Step Solution: 1. **Given Equation**: \[ x^4 y^5 = (x + y)^{m + 1} \] 2. **Differentiate Both Sides**: We will use the product rule on the left-hand side and the chain rule on the right-hand side. - Left-hand side differentiation: \[ \frac{d}{dx}(x^4 y^5) = 4x^3 y^5 + x^4 \cdot 5y^4 \frac{dy}{dx} \] - Right-hand side differentiation: \[ \frac{d}{dx}((x + y)^{m + 1}) = (m + 1)(x + y)^m \left(1 + \frac{dy}{dx}\right) \] 3. **Set the Derivatives Equal**: \[ 4x^3 y^5 + 5x^4 y^4 \frac{dy}{dx} = (m + 1)(x + y)^m \left(1 + \frac{dy}{dx}\right) \] 4. **Substitute \(\frac{dy}{dx} = \frac{y}{x}\)**: Substitute the given derivative into the equation: \[ 4x^3 y^5 + 5x^4 y^4 \left(\frac{y}{x}\right) = (m + 1)(x + y)^m \left(1 + \frac{y}{x}\right) \] 5. **Simplify the Left Side**: \[ 4x^3 y^5 + 5x^3 y^5 = 9x^3 y^5 \] 6. **Simplify the Right Side**: \[ (m + 1)(x + y)^m \left(\frac{x + y}{x}\right) = (m + 1)(x + y)^{m + 1} \cdot \frac{1}{x} \] 7. **Equate Both Sides**: \[ 9x^3 y^5 = (m + 1)(x + y)^{m + 1} \cdot \frac{1}{x} \] 8. **Substituting \(x^4 y^5\) for \((x + y)^{m + 1}\)**: From the original equation, we know: \[ (x + y)^{m + 1} = x^4 y^5 \] Thus: \[ 9x^3 y^5 = (m + 1) \cdot \frac{x^4 y^5}{x} \] 9. **Cancel \(y^5\) and Rearrange**: \[ 9x^3 = (m + 1)x^3 \] Dividing both sides by \(x^3\) (assuming \(x \neq 0\)): \[ 9 = m + 1 \] 10. **Solve for \(m\)**: \[ m = 9 - 1 = 8 \] ### Final Answer: \[ m = 8 \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If x^(4)y^(5)=(x+y)^(9), show that (dy)/(dx)=(y)/(x)

If x^(3)y^(4)=(x+y)^(n+1)and(dy)/(dx)=(y)/(x),"then n = ......"

If x^(m)y^(n)=(x+y)^(m+n) prove that (dy)/(dx)=(y)/(x)

If x^(m)*y^(n)=(x+y)^(m+n) then (dy)/(dx) is:

If x^(m)y^(n)=(x+y)^(m+n), prove that (dy)/(dx)=(y)/(x)

If x^(m)y^(n)=(x+y)^(m+n), Prove that (dy)/(dx)=(y)/(x)

If x^(m)y^(n)=(x+y)^(m+n), prove that (dy)/(dx)=(y)/(x)

If x^(m)y^(n)=(x+y)^(m+n), prove that (dy)/(dx)=(y)/(x)

If x^(m)*y^(n)=(x+y)^(m+n), show that (dy)/(dx)=(y)/(x)