Home
Class 12
MATHS
If x^(3) +x^(2) y +xy^(2) +y^(3) =81,th...

If ` x^(3) +x^(2) y +xy^(2) +y^(3) =81,then (dy)/(dx) =`

A

` -((3x^(2)+ 2xy +y^(2))/( x^(2) +2xy +3y^(2)))`

B

` -( x^(2) +2xy +3y^(2))/((3x^(2)+ 2xy +y^(2)))`

C

` (3x^(2)+ 2xy +y^(2))/( x^(2) +2xy +3y^(2))`

D

`( x^(2) +2xy +3y^(2)) /(3x^(2)+ 2xy +y^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to differentiate the given implicit function with respect to \( x \) and find \( \frac{dy}{dx} \). Given: \[ x^3 + x^2y + xy^2 + y^3 = 81 \] ### Step 1: Differentiate both sides with respect to \( x \) Using implicit differentiation: \[ \frac{d}{dx}(x^3) + \frac{d}{dx}(x^2y) + \frac{d}{dx}(xy^2) + \frac{d}{dx}(y^3) = \frac{d}{dx}(81) \] ### Step 2: Apply the differentiation rules 1. For \( x^3 \): \[ \frac{d}{dx}(x^3) = 3x^2 \] 2. For \( x^2y \) (using the product rule): \[ \frac{d}{dx}(x^2y) = x^2 \frac{dy}{dx} + 2xy \] 3. For \( xy^2 \) (using the product rule): \[ \frac{d}{dx}(xy^2) = y^2 \frac{d}{dx}(x) + x \frac{d}{dx}(y^2) = y^2 + 2xy \frac{dy}{dx} \] 4. For \( y^3 \) (using the chain rule): \[ \frac{d}{dx}(y^3) = 3y^2 \frac{dy}{dx} \] 5. The derivative of a constant (81) is: \[ \frac{d}{dx}(81) = 0 \] ### Step 3: Combine all the differentiated terms Putting it all together: \[ 3x^2 + (x^2 \frac{dy}{dx} + 2xy) + (y^2 + 2xy \frac{dy}{dx}) + (3y^2 \frac{dy}{dx}) = 0 \] ### Step 4: Rearranging the equation Combine like terms: \[ 3x^2 + 2xy + y^2 + (x^2 + 2xy + 3y^2) \frac{dy}{dx} = 0 \] ### Step 5: Isolate \( \frac{dy}{dx} \) Rearranging gives: \[ (x^2 + 2xy + 3y^2) \frac{dy}{dx} = - (3x^2 + 2xy + y^2) \] ### Step 6: Solve for \( \frac{dy}{dx} \) Finally, we can express \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = -\frac{3x^2 + 2xy + y^2}{x^2 + 2xy + 3y^2} \] ### Final Answer \[ \frac{dy}{dx} = -\frac{3x^2 + 2xy + y^2}{x^2 + 2xy + 3y^2} \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If x^(4)+7x^(2)y^(2)+9y^(4)=24xy^(3) then (dy)/(dx)=

xy=(x+y)^(2) then find (dy)/(dx)

If x^(2)+2xy+y^(3)=4, find (dy)/(dx)

If 2x^(2)-3xy+y^(2)+x+2y-8=0 then (dy)/(dx) =

(xy - x^2)dy = y^2 dx

If sin (xy) + (x)/(y) =x^(2) - y , " then " (dy)/(dx) is equal to

If x^(2)+2xy+y^(3)=42, find (dy)/(dx)

if 2x^(2)-3xy+y^(2)+x+2y-8=0 then (dy)/(dx)

y^(2)-x^(2) (dy)/(dx) = xy(dy)/(dx)

If x^(3)-y^(3)+3xy^(2)-3x^(2)y+1=0 then at (0,1)(dy)/(dx)=