Home
Class 12
MATHS
If x ^(2)y^(2) =tan ^(-1) sqrt(x^(2) +y...

If ` x ^(2)y^(2) =tan ^(-1) sqrt(x^(2) +y^(2) )+cot ^(-1) sqrt(x^(2) +y^(2)),then (dy)/(dx)=`

A

` (-x)/( y)`

B

` (x)/(y)`

C

` (-y)/(x)`

D

` (y)/(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we start with the equation: \[ x^2 y^2 = \tan^{-1}(\sqrt{x^2 + y^2}) + \cot^{-1}(\sqrt{x^2 + y^2}) \] ### Step 1: Use the Identity We know from trigonometric identities that: \[ \tan^{-1}(p) + \cot^{-1}(p) = \frac{\pi}{2} \] for any \( p \). In our case, let \( p = \sqrt{x^2 + y^2} \). Therefore, we can rewrite the equation as: \[ x^2 y^2 = \frac{\pi}{2} \] ### Step 2: Rearranging the Equation From the equation \( x^2 y^2 = \frac{\pi}{2} \), we can express it in terms of \( xy \): \[ xy = \sqrt{\frac{\pi}{2}} \] ### Step 3: Differentiate Both Sides Now, we differentiate both sides with respect to \( x \). Using the product rule on the left side: \[ \frac{d}{dx}(xy) = y \frac{dx}{dx} + x \frac{dy}{dx} = y + x \frac{dy}{dx} \] Since the right side \( \sqrt{\frac{\pi}{2}} \) is a constant, its derivative is 0: \[ \frac{d}{dx}\left(\sqrt{\frac{\pi}{2}}\right) = 0 \] Thus, we have: \[ y + x \frac{dy}{dx} = 0 \] ### Step 4: Solve for \(\frac{dy}{dx}\) Rearranging the equation gives: \[ x \frac{dy}{dx} = -y \] Now, divide both sides by \( x \): \[ \frac{dy}{dx} = -\frac{y}{x} \] ### Final Answer Thus, the derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = -\frac{y}{x} \] ---
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y=tan^(-1) sqrt(x^(2)+y^(2))+cot^(-1) sqrt(x^(2)+y^(2)),"then " dy/dx=

If y=tan ^(-1) (sqrt( 1+x^(2))-x),then ( dy)/(dx)=

If y=sqrt(1+x^(2)) then (dy)/(dx) =

If x=sqrt(1-y^2) , then (dy)/(dx)=

If y =sin ^(-1) sqrt((1+x^(2))/( 2) ),then (dy)/(dx) =

If y=tan ^(-1) (sqrt( 1+x^(2)) +x ),then (dy)/(dx) =

If y=sin ^(-1)((x)/( sqrt(x^(2) +a^(2)))) ,then (dy)/(dx)=

If y=tan^(-1)sqrt(x^(2)+1)+cot^(-1)sqrt(x^(2)+1)" then "(dy)/(dx)=

y = tan ^ (- 1) (cot x) + cot ^ (- 1) (tan x), (pi) / (2)