Home
Class 12
MATHS
If cos (xy) =x+ y ,then (dy)/(dx)=...

If ` cos (xy) =x+ y ,then (dy)/(dx)=`

A

`-( (1+ xsin (xy))/(1+ysin (xy)))`

B

`-((1+ysin (xy))/ (1+ xsin (xy) ) ) `

C

`(1+ysin (xy))/ (1+ xsin (xy) ) `

D

` (1+ xsin (xy) ) /(1+ysin (xy))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \cos(xy) = x + y \) and we need to find \( \frac{dy}{dx} \), we will use implicit differentiation. Here’s the step-by-step solution: ### Step 1: Differentiate both sides with respect to \( x \) We start by differentiating the equation \( \cos(xy) = x + y \) with respect to \( x \). \[ \frac{d}{dx}[\cos(xy)] = \frac{d}{dx}[x + y] \] ### Step 2: Apply the chain rule on the left side Using the chain rule on the left side, we have: \[ -\sin(xy) \cdot \frac{d}{dx}[xy] = 1 + \frac{dy}{dx} \] ### Step 3: Differentiate \( xy \) using the product rule Now, we need to differentiate \( xy \) using the product rule: \[ \frac{d}{dx}[xy] = x \frac{dy}{dx} + y \] Substituting this back into the equation gives: \[ -\sin(xy) \cdot (x \frac{dy}{dx} + y) = 1 + \frac{dy}{dx} \] ### Step 4: Distribute \( -\sin(xy) \) Distributing \( -\sin(xy) \) results in: \[ -\sin(xy) \cdot x \frac{dy}{dx} - y \sin(xy) = 1 + \frac{dy}{dx} \] ### Step 5: Rearrange the equation Now, we rearrange the equation to isolate terms involving \( \frac{dy}{dx} \): \[ -\sin(xy) \cdot x \frac{dy}{dx} - \frac{dy}{dx} = 1 + y \sin(xy) \] Factoring out \( \frac{dy}{dx} \): \[ \frac{dy}{dx}(-\sin(xy) \cdot x - 1) = 1 + y \sin(xy) \] ### Step 6: Solve for \( \frac{dy}{dx} \) Now, we can solve for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{1 + y \sin(xy)}{-\sin(xy) \cdot x - 1} \] ### Final Result Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{1 + y \sin(xy)}{-\sin(xy) \cdot x - 1} \] ---
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If cos (xy) =sin (x+y) ,then (dy)/(dx)

If x+cos(xy)=0," then "(dy)/(dx)=

If x+sqrt( xy)+ y=1 ,then (dy)/(dx)=

If sin ^(2) y+cos (xy)=pi ,then (dy)/(dx) =

If sec (x+y) = xy, then find (dy)/(dx)

If e^(x +y) = xy " then " (dy)/(dx)= ?

If sin(xy)+cos(xy)=0, then (dy)/(dx) is

If sin(xy)+cos(xy)=0, then (dy)/(dx) is

If y=xe^(xy) , then (dy)/(dx) =

If y= e^(xy), then (dy)/(dx) =