Home
Class 12
MATHS
If sin y = x sin (a + y), then show that...

If `sin y = x sin (a + y)`, then show that: ` dy/dx = sina/(1 - 2x \ cos a + x^2)`.

A

` (sin a)/( 1+2xcos a +x^(2)) `

B

` (-sin a)/( 1+2xcos a +x^(2)) `

C

` (sin a)/( 1-2xcos a +x^(2)) `

D

` (-sin a)/( 1-2xcos a +x^(2)) `

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If sin y=x sin(a+y), then show that: (dy)/(dx)=(sin a)/(1-2x cos a+x^(2))

If sin y = x sin (a + y) prove that (dy) / (dx) = (sin a) / (1-2x cos a + x ^ (2))

If y = x sin y prove that (dy) / (dx) = (sin y) / ((1-x cos y))

If y=(sin x-x cos x)(cos x+x sin x), show that (dy)/(dx)=x sin2x-x^(2)cos2x

If y,=x sin y, prove that (dy)/(dx),=(sin y)/((1-x cos y))

If x sin(a+y)+sina.cos(a+y)=0 , then prove that (dy)/(dx) = (sin^(2)(a+y))/(sina)

if sin x=y sin(x+b) show that (dy)/(dx)=(sin b)/(sin^(2)(x+b))

If y = a sin x + b cos x , show that y^2+((dy)/(dx))^2=a^2+b^2

If y=x sin(a+y), prove that (dy)/(dx)=(sin^(2)(a+y))/(sin(a+y)-y cos(a+y))