Home
Class 12
MATHS
If sin (x+y) +cos (x+y) =1,then (dy)/(d...

If ` sin (x+y) +cos (x+y) =1,then (dy)/(dx)=`

A

` -1`

B

1

C

0

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) given the equation \( \sin(x+y) + \cos(x+y) = 1 \), we will differentiate both sides of the equation with respect to \(x\). ### Step-by-Step Solution: 1. **Differentiate the equation**: We start with the equation: \[ \sin(x+y) + \cos(x+y) = 1 \] Now, we differentiate both sides with respect to \(x\): \[ \frac{d}{dx}[\sin(x+y)] + \frac{d}{dx}[\cos(x+y)] = \frac{d}{dx}[1] \] 2. **Apply the chain rule**: Using the chain rule for differentiation: - The derivative of \(\sin(u)\) is \(\cos(u) \cdot \frac{du}{dx}\) - The derivative of \(\cos(u)\) is \(-\sin(u) \cdot \frac{du}{dx}\) where \(u = x + y\). Thus, we have: \[ \cos(x+y) \cdot \left(1 + \frac{dy}{dx}\right) - \sin(x+y) \cdot \left(1 + \frac{dy}{dx}\right) = 0 \] 3. **Factor out the common term**: We can factor out \((1 + \frac{dy}{dx})\): \[ (1 + \frac{dy}{dx})(\cos(x+y) - \sin(x+y)) = 0 \] 4. **Set the factors to zero**: This gives us two cases: - Case 1: \(1 + \frac{dy}{dx} = 0\) - Case 2: \(\cos(x+y) - \sin(x+y) = 0\) 5. **Solve Case 1**: From Case 1: \[ 1 + \frac{dy}{dx} = 0 \implies \frac{dy}{dx} = -1 \] 6. **Solve Case 2**: From Case 2: \[ \cos(x+y) = \sin(x+y) \] This implies that \(x+y = \frac{\pi}{4} + n\pi\) for any integer \(n\). However, this does not provide a value for \(\frac{dy}{dx}\) directly. 7. **Final Result**: The only relevant solution for \(\frac{dy}{dx}\) is from Case 1: \[ \frac{dy}{dx} = -1 \] ### Conclusion: Thus, the final answer is: \[ \frac{dy}{dx} = -1 \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y=cos (sin x ),then (dy)/(dx) =

If cos (xy) =sin (x+y) ,then (dy)/(dx)

If y= (sinx -cos x )^((sin x +cos x ) ),then (dy)/(dx)=

If y= sin (cos (tan x)) ,then (dy)/(dx) =

If y=sin x+cos x then (dy)/(dx) =

if y=(sin x)^(cos x). Then (dy)/(dx)=

If y=log((sin x)/(1+cos x)),"then "(dy)/(dx)