Home
Class 12
MATHS
If cos (xy) =sin (x+y) ,then (dy)/(dx)...

If ` cos (xy) =sin (x+y) ,then (dy)/(dx) `

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the equation \( \cos(xy) = \sin(x+y) \), we will use implicit differentiation. Here’s the step-by-step solution: ### Step 1: Differentiate both sides with respect to \(x\) Starting with the equation: \[ \cos(xy) = \sin(x+y) \] We differentiate both sides with respect to \(x\): \[ \frac{d}{dx}[\cos(xy)] = \frac{d}{dx}[\sin(x+y)] \] ### Step 2: Apply the chain rule on the left side Using the chain rule on the left side: \[ -\sin(xy) \cdot \frac{d}{dx}(xy) \] For \(\frac{d}{dx}(xy)\), we use the product rule: \[ \frac{d}{dx}(xy) = x \frac{dy}{dx} + y \] So, the left side becomes: \[ -\sin(xy) \cdot (x \frac{dy}{dx} + y) \] ### Step 3: Differentiate the right side Now, differentiate the right side: \[ \frac{d}{dx}[\sin(x+y)] = \cos(x+y) \cdot \frac{d}{dx}(x+y) \] And since \(\frac{d}{dx}(x+y) = 1 + \frac{dy}{dx}\), we have: \[ \cos(x+y) \cdot (1 + \frac{dy}{dx}) \] ### Step 4: Set the derivatives equal Now we set the derivatives equal: \[ -\sin(xy) \cdot (x \frac{dy}{dx} + y) = \cos(x+y) \cdot (1 + \frac{dy}{dx}) \] ### Step 5: Expand and rearrange Expanding both sides gives: \[ -\sin(xy) \cdot x \frac{dy}{dx} - \sin(xy) \cdot y = \cos(x+y) + \cos(x+y) \cdot \frac{dy}{dx} \] Now, we want to collect all terms involving \(\frac{dy}{dx}\) on one side: \[ -\sin(xy) \cdot x \frac{dy}{dx} - \cos(x+y) \cdot \frac{dy}{dx} = \cos(x+y) + \sin(xy) \cdot y \] ### Step 6: Factor out \(\frac{dy}{dx}\) Factoring out \(\frac{dy}{dx}\) gives: \[ \frac{dy}{dx} \left(-\sin(xy) \cdot x - \cos(x+y)\right) = \cos(x+y) + \sin(xy) \cdot y \] ### Step 7: Solve for \(\frac{dy}{dx}\) Now, we can solve for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{\cos(x+y) + \sin(xy) \cdot y}{-\sin(xy) \cdot x - \cos(x+y)} \] ### Final Answer Thus, the final expression for \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = \frac{\cos(x+y) + y \sin(xy)}{-x \sin(xy) - \cos(x+y)} \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If cos (xy) =x+ y ,then (dy)/(dx)=

If (cos x)^(y)=(sin y)^(x), then (dy)/(dx) equals-

If (cos)^(y)=(sin y)^(x), then (dy)/(dx) equals

If y=sin x+cos x then (dy)/(dx) =

If y=cos (sin x ),then (dy)/(dx) =

If sin (x+y) +cos (x+y) =1,then (dy)/(dx)=

If y+cos y=sin x then find (dy)/(dx)

If y= sin (cos (tan x)) ,then (dy)/(dx) =

If sin ^(2) y+cos (xy)=pi ,then (dy)/(dx) =