Home
Class 12
MATHS
If y=1 +xe^(y) ,then (dy)/(dx) =...

If ` y=1 +xe^(y) ,then (dy)/(dx) =`

A

` (e^(y))/( y-2)`

B

` (e^(y))/( 2-y) `

C

` (xe^(y))/( y-2)`

D

` (xe^(y))/( 2-y)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( y = 1 + x e^y \) and find \( \frac{dy}{dx} \), we will use implicit differentiation. Here are the steps: ### Step-by-Step Solution: 1. **Differentiate both sides with respect to \( x \)**: \[ \frac{d}{dx}(y) = \frac{d}{dx}(1 + x e^y) \] This gives: \[ \frac{dy}{dx} = 0 + \frac{d}{dx}(x e^y) \] 2. **Apply the product rule to \( x e^y \)**: The product rule states that if you have two functions \( u \) and \( v \), then \( \frac{d}{dx}(uv) = u \frac{dv}{dx} + v \frac{du}{dx} \). Here, let \( u = x \) and \( v = e^y \). Thus: \[ \frac{d}{dx}(x e^y) = x \frac{d}{dx}(e^y) + e^y \frac{d}{dx}(x) \] 3. **Differentiate \( e^y \)** using the chain rule: \[ \frac{d}{dx}(e^y) = e^y \frac{dy}{dx} \] Therefore, substituting back: \[ \frac{d}{dx}(x e^y) = x e^y \frac{dy}{dx} + e^y \] 4. **Substituting back into the equation**: Now we have: \[ \frac{dy}{dx} = x e^y \frac{dy}{dx} + e^y \] 5. **Rearranging the equation**: To isolate \( \frac{dy}{dx} \), we rearrange: \[ \frac{dy}{dx} - x e^y \frac{dy}{dx} = e^y \] Factor out \( \frac{dy}{dx} \): \[ \frac{dy}{dx}(1 - x e^y) = e^y \] 6. **Solving for \( \frac{dy}{dx} \)**: Finally, divide both sides by \( (1 - x e^y) \): \[ \frac{dy}{dx} = \frac{e^y}{1 - x e^y} \] ### Final Answer: \[ \frac{dy}{dx} = \frac{e^y}{1 - x e^y} \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y=xe^(xy) , then (dy)/(dx) =

If ye ^(x) +xe^(y) =1 ,then (dy)/(dx) =

If y = e^(cot x )tan (xe^(x) ) ,then ( dy)/(dx)=

If y=x+(1)/(x+y)," then: "(dy)/(dx)=

If y=xe^(y)," then "x(1-y)y_(1)=

If y=xe^(y)," then "(1-y)y_(1)=

If y=xe^(xy)" and "(dy)/(dx)=(y(1+u))/(x(1-u))," then "u=

If xe^(xy)-y=sin^(2)x then (dy)/(dx) at x = 0 is