Home
Class 12
MATHS
If xy =log (xy) ,then (dy)/(dx)=...

If ` xy =log (xy) ,then (dy)/(dx)=`

A

` (x)/(y)`

B

` (-x)/(y)`

C

` (y)/(x)`

D

` (-y)/(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) given the equation \(xy = \log(xy)\), we will differentiate both sides of the equation with respect to \(x\). ### Step-by-Step Solution: 1. **Differentiate Both Sides:** We start with the equation: \[ xy = \log(xy) \] Now, we differentiate both sides with respect to \(x\). 2. **Use Product Rule on the Left Side:** For the left side \(xy\), we apply the product rule: \[ \frac{d}{dx}(xy) = y + x\frac{dy}{dx} \] 3. **Differentiate the Right Side:** For the right side \(\log(xy)\), we use the chain rule: \[ \frac{d}{dx}(\log(xy)) = \frac{1}{xy} \cdot \frac{d}{dx}(xy) = \frac{1}{xy}(y + x\frac{dy}{dx}) \] 4. **Set the Derivatives Equal:** Now we equate the derivatives from both sides: \[ y + x\frac{dy}{dx} = \frac{1}{xy}(y + x\frac{dy}{dx}) \] 5. **Multiply Through by \(xy\):** To eliminate the fraction, multiply both sides by \(xy\): \[ xy(y + x\frac{dy}{dx}) = y + x\frac{dy}{dx} \] 6. **Rearranging the Equation:** Expanding the left side gives: \[ xy^2 + x^2y\frac{dy}{dx} = y + x\frac{dy}{dx} \] Rearranging terms, we get: \[ x^2y\frac{dy}{dx} - x\frac{dy}{dx} = y - xy^2 \] 7. **Factor Out \(\frac{dy}{dx}\):** Factoring out \(\frac{dy}{dx}\) from the left side: \[ \frac{dy}{dx}(x^2y - x) = y - xy^2 \] 8. **Solve for \(\frac{dy}{dx}\):** Finally, we can solve for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{y - xy^2}{x^2y - x} \] 9. **Simplifying the Expression:** We can simplify this further if needed, but we can also check the options provided. 10. **Final Result:** After simplification, we find: \[ \frac{dy}{dx} = -\frac{y}{x} \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

if x=y log(xy) then (dx)/(dy)=

If log (x+y) =log (xy ) +a, then (dy)/(dx) =

If y= e^(xy), then (dy)/(dx) =

If cos (xy) =x+ y ,then (dy)/(dx)=

xy=1," then "(dy)/(dx)

(dy)/(dx)=x+xy

If y=xe^(xy) , then (dy)/(dx) =

If x=y ln(xy), then (dy)/(dx) equals

If cos (xy) =sin (x+y) ,then (dy)/(dx)

If xy-logy=1," then "(dy)/(dx)=