Home
Class 12
MATHS
If x^(y) y^(x)=(x+ y)^(x+y).then (dy)/(...

If ` x^(y) y^(x)=(x+ y)^(x+y).then (dy)/(dx)=`

A

` -((y+xlog y -x(1+log (x+ y)))/( x+y log x -y (1+log (x+y ))))`

B

` (y+xlog y -x(1+log (x+ y)))/( x+y log x -y (1+log (x+y )))`

C

`(y/x) (-y-xlog y +x(1+log (x+ y)))/( x+y log x -y (1+log (x+y )))`

D

` (y/x)(y+xlog y -x(1+log (x+ y)))/( x+y log x -y (1+log (x+y )))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^y y^x = (x+y)^{x+y} \) and find \( \frac{dy}{dx} \), we will use logarithmic differentiation. Here’s a step-by-step solution: ### Step 1: Take the logarithm of both sides We start by taking the natural logarithm of both sides of the equation: \[ \log(x^y y^x) = \log((x+y)^{x+y}) \] ### Step 2: Apply logarithmic properties Using the properties of logarithms, we can simplify both sides: \[ \log(x^y) + \log(y^x) = (x+y) \log(x+y) \] This can be further simplified to: \[ y \log x + x \log y = (x+y) \log(x+y) \] ### Step 3: Differentiate both sides with respect to \( x \) Now we differentiate both sides with respect to \( x \): \[ \frac{d}{dx}(y \log x) + \frac{d}{dx}(x \log y) = \frac{d}{dx}((x+y) \log(x+y)) \] Using the product rule on the left side: \[ \frac{dy}{dx} \log x + y \cdot \frac{1}{x} + \log y + x \cdot \frac{dy}{dx} \cdot \frac{1}{y} = \frac{d}{dx}((x+y) \log(x+y)) \] ### Step 4: Differentiate the right side For the right side, we apply the product rule: \[ \frac{d}{dx}((x+y) \log(x+y)) = \log(x+y) + (x+y) \cdot \frac{1}{x+y} \cdot (1 + \frac{dy}{dx}) \] This simplifies to: \[ \log(x+y) + (1 + \frac{dy}{dx}) \] ### Step 5: Set up the equation Now we have: \[ \frac{dy}{dx} \log x + y \cdot \frac{1}{x} + \log y + x \cdot \frac{dy}{dx} \cdot \frac{1}{y} = \log(x+y) + 1 + \frac{dy}{dx} \] ### Step 6: Collect terms involving \( \frac{dy}{dx} \) Rearranging gives: \[ \frac{dy}{dx} \log x + \frac{dy}{dx} \cdot \frac{x}{y} - \frac{dy}{dx} = \log(x+y) + 1 - y \cdot \frac{1}{x} - \log y \] ### Step 7: Factor out \( \frac{dy}{dx} \) Factoring out \( \frac{dy}{dx} \): \[ \frac{dy}{dx} \left( \log x + \frac{x}{y} - 1 \right) = \log(x+y) + 1 - \frac{y}{x} - \log y \] ### Step 8: Solve for \( \frac{dy}{dx} \) Now, isolate \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{\log(x+y) + 1 - \frac{y}{x} - \log y}{\log x + \frac{x}{y} - 1} \] ### Final Result Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{\log(x+y) + 1 - \frac{y}{x} - \log y}{\log x + \frac{x}{y} - 1} \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y^(x)=x^(y), then find (dy)/(dx)

If x^(y) =3^(x-y),then (dy)/(dx)=

If (x+y)=sin(x+y) then (dy)/(dx)=

If y=(x)/(x+y) , then (dy)/(dx)=

If x^(y) = y^(x) " then " (dy)/(dx)= ?

If y = x/ (x+y) then (dy)/(dx)=

if y^(x)=e^(y-x) then (dy)/(dx)

x^(y)=y^(x) then find (dy)/(dx)

If x^(y)=y^(x), then find(dy)/(dx)

If y=(x)/(x+y), then (dy)/(dx) =:

NIKITA PUBLICATION-DIFFERENTIATION -MCQ
  1. If y^(y) =xsin y,then (dy)/(dx)=

    Text Solution

    |

  2. If x^(y) = y^(x) " then " (dy)/(dx)= ?

    Text Solution

    |

  3. If x^(y) y^(x)=(x+ y)^(x+y).then (dy)/(dx)=

    Text Solution

    |

  4. If sec ((x+y)/( x-y))=a^(2) ,then (dy)/(dx) =

    Text Solution

    |

  5. If cos^(-1) ((x^(2) -y^(2))/( x^(2)+y^(2)))=a ,then (dy)/(dx) =

    Text Solution

    |

  6. If cos^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=tan^(-1)a, prove than (dy)/(d...

    Text Solution

    |

  7. If cos^(-1) ((x^(2) -y^(2))/( x^(2)+y^(2)))=a ,then (dy)/(dx) =

    Text Solution

    |

  8. If tan^(-1)((x^(2)-2y^(2))/(x^(2)+2y^(2)))=a,"show that "(dy)/(dx)=(x(...

    Text Solution

    |

  9. If log (10) ((x^(2) - y^(2))/(x^(2) + y^(2))) = 2 , " then" (dy)/(dx)...

    Text Solution

    |

  10. IF log (10)""((x^(3)-y^(3))/(x^(3)+y^(3)))=2 then (dy)/(dx)=

    Text Solution

    |

  11. If y=sqrt(sinx+sqrt(sinx+sqrt(sinx+\ dotto\ oo))) , prove that (dy)/(d...

    Text Solution

    |

  12. If y=sqrt(logx+sqrt(logx+sqrtlogx+......oo)), " then " dy/dx is

    Text Solution

    |

  13. If x= e^(y+e^(y+....infty )),xgt 0,then (dy)/(dx)=

    Text Solution

    |

  14. If y =e^(x+e^(x+e^(x+...infty ))),then (dy)/(dx) =

    Text Solution

    |

  15. If y= x^(2) +(1)/( x^(2) + (1)/( x^(2) +...infty )),then (dy)/(dx) =

    Text Solution

    |

  16. If y= (sin x )/( 1+(cos x )/(( sin x)/(1+ ....infty ))),then (dy)/(dx...

    Text Solution

    |

  17. If x = 4t ,y =(4)/(t) ,then (dy)/(dx)=

    Text Solution

    |

  18. If x=a(t-(1)/(t)),y=a(t+(1)/(t)), where t be the parameter, then (dy)/...

    Text Solution

    |

  19. If x= at^(2) ,y= at ,then (dy)/(dx)=

    Text Solution

    |

  20. If x = 2at^(2) ,y =at^(4) ,then (dy)/(dx) =

    Text Solution

    |