Home
Class 12
MATHS
If x =a ((1-t^(2))/( 1+ t^(2))),y =(2bt...

If ` x =a ((1-t^(2))/( 1+ t^(2))),y =(2bt )/(1+t^(2) ),then (dy)/(dx) =`

A

` (x)/(y)`

B

` (-x)/( y)`

C

` (b^(2) x)/( a^(2) y)`

D

` (-b^(2)x)/( a^(2)y)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) given the parametric equations \(x = a \frac{1 - t^2}{1 + t^2}\) and \(y = \frac{2bt}{1 + t^2}\), we will follow these steps: ### Step 1: Differentiate \(x\) with respect to \(t\) Given: \[ x = a \frac{1 - t^2}{1 + t^2} \] Using the quotient rule: \[ \frac{dx}{dt} = \frac{(1 + t^2)(0 - 2t) - (1 - t^2)(2t)}{(1 + t^2)^2} \] Calculating the numerator: \[ = (1 + t^2)(-2t) - (1 - t^2)(2t) \] \[ = -2t - 2t^3 - 2t + 2t^3 = -4t \] Thus, \[ \frac{dx}{dt} = a \cdot \frac{-4t}{(1 + t^2)^2} = \frac{-4at}{(1 + t^2)^2} \] ### Step 2: Differentiate \(y\) with respect to \(t\) Given: \[ y = \frac{2bt}{1 + t^2} \] Again using the quotient rule: \[ \frac{dy}{dt} = \frac{(1 + t^2)(2b) - (2bt)(2t)}{(1 + t^2)^2} \] Calculating the numerator: \[ = 2b(1 + t^2) - 4bt^2 = 2b - 2bt^2 \] Thus, \[ \frac{dy}{dt} = \frac{2b(1 - t^2)}{(1 + t^2)^2} \] ### Step 3: Find \(\frac{dy}{dx}\) Using the chain rule: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \frac{\frac{2b(1 - t^2)}{(1 + t^2)^2}}{\frac{-4a t}{(1 + t^2)^2}} \] The \((1 + t^2)^2\) cancels out: \[ \frac{dy}{dx} = \frac{2b(1 - t^2)}{-4at} = \frac{-b(1 - t^2)}{2at} \] ### Final Answer \[ \frac{dy}{dx} = \frac{-b(1 - t^2)}{2at} \] ---
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If x=a((1+t^(2))/(1-t^(2))) and y=(2t)/(1-t^(2)), find (dy)/(dx)

If x=a((1+t^(2))/(1-t^(2))) and y=(2t)/(1-t^(2)), find (dy)/(dx)

If x=tan ((1)/(2) sin ^(-1)((2t)/( 1+t^(2))) +(1)/(2)cos ^(-1) ((1-t^(2))/( 1+t^(2)))), then y= (2t)/( 1-t^(2)), then (dy)/(dx)=

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to

If x=(1-t^2)/(1+t^2) and y=(2at)/(1+t^2) , then (dy)/(dx)=

If x=(1-t^(2))/(1+t^(2))" and "y=(2t)/(1+t^(2))," then: "(dy)/(dx)|_(t=1) is

If x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2) ,then (dy)/(dx)=

If x=(2t)/(1+t^(2)),y=(1-t^(2))/(1+t^(2))," then "(dy)/(dx)=

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)), prove that (dy)/(dx)+(x)/(y)=0

NIKITA PUBLICATION-DIFFERENTIATION -MCQ
  1. If x= at^(2) ,y= at ,then (dy)/(dx)=

    Text Solution

    |

  2. If x = 2at^(2) ,y =at^(4) ,then (dy)/(dx) =

    Text Solution

    |

  3. If x =a ((1-t^(2))/( 1+ t^(2))),y =(2bt )/(1+t^(2) ),then (dy)/(dx) =

    Text Solution

    |

  4. If x=(2t)/(1+t^2),y=(1-t^2)/(1+t^2),t h e nfin d(dy)/(dx)a tt=2.

    Text Solution

    |

  5. If x^(2) +y^(2) =t-(1)/(t) andx^(4) +y^(4) =t^(2) +(1)/( t^(2)),then (...

    Text Solution

    |

  6. if x^2+y^2 = t - 1/t and x^4 + y^4 = t^2 + 1/t^2 then prove that dy/dx...

    Text Solution

    |

  7. If x=a cos theta ,y=asin theta ,then (dy)/(dx)=

    Text Solution

    |

  8. If xsin t,y =cos 2t ,then (dy)/(dx) =

    Text Solution

    |

  9. If x =a cot theta , y=b cosec theta ,then (dy)/(dx)=

    Text Solution

    |

  10. If x = a sec theta, y = b tan theta " then " (dy)/(dx) = ?

    Text Solution

    |

  11. If x =asec theta,y = atan theta , then" at" theta =(pi)/( 4) ,(dy)/(d...

    Text Solution

    |

  12. If x=acos^3t y =asin^3t then (dy)/(dx)=

    Text Solution

    |

  13. If x = a cos^(3) theta, y = a sin ^(3) theta then sqrt(1+((dy)/(dx))^(...

    Text Solution

    |

  14. If x=a cos ^(3) t,y =a sin ^(3)t,then " at" t = (pi)/(3) ,(dy)/(dx) ...

    Text Solution

    |

  15. If x=asec^3thetaa n dy=atan^3theta,fin d(dy)/(dx)a ttheta=pi/3dot

    Text Solution

    |

  16. If x= sec ^(2) theta, y =tan ^(3) theta ,then " at " theta (pi)/(3) ,...

    Text Solution

    |

  17. If x= 3tan theta ,y =3cosec theta, then " at " theta =(pi)/(6) ,(dy)/...

    Text Solution

    |

  18. If x= 2 cos^(4) (t+3) ,y=3sin ^(4) (t+3) ,then (dy)/(dx)=

    Text Solution

    |

  19. if x=a cos^(4) theta, y= a sin^(4) theta, "then" (dy)/(dx)"at" theta=(...

    Text Solution

    |

  20. If x=sin tcos 2t,y= cos tsin 2t ,then " at " t= (pi)/(4) ,(dy)/(dx)

    Text Solution

    |