Home
Class 12
MATHS
If x^(2) +y^(2) =t-(1)/(t) andx^(4) +y^(...

If` x^(2) +y^(2) =t-(1)/(t) andx^(4) +y^(4) =t^(2) +(1)/( t^(2)),then (dy)/(dx) =`

A

` x^(3) y`

B

` -x^(3)y`

C

` (1)/( x^(3)y)`

D

` (-1)/( x^(3)y)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we will follow a systematic approach using differentiation and algebraic manipulation. Let's break it down step by step. ### Given: 1. \( x^2 + y^2 = t - \frac{1}{t} \) (Equation 1) 2. \( x^4 + y^4 = t^2 + \frac{1}{t^2} \) (Equation 2) ### Step 1: Express \( x^4 + y^4 \) in terms of \( x^2 + y^2 \) We know that: \[ x^4 + y^4 = (x^2 + y^2)^2 - 2x^2y^2 \] Substituting Equation 1 into this expression: \[ x^4 + y^4 = (t - \frac{1}{t})^2 - 2x^2y^2 \] ### Step 2: Expand the square Expanding \( (t - \frac{1}{t})^2 \): \[ (t - \frac{1}{t})^2 = t^2 - 2 + \frac{1}{t^2} \] Thus, \[ x^4 + y^4 = t^2 - 2 + \frac{1}{t^2} - 2x^2y^2 \] ### Step 3: Set the two expressions for \( x^4 + y^4 \) equal From Equation 2, we have: \[ x^4 + y^4 = t^2 + \frac{1}{t^2} \] Setting the two expressions equal: \[ t^2 - 2 + \frac{1}{t^2} - 2x^2y^2 = t^2 + \frac{1}{t^2} \] ### Step 4: Simplify the equation Cancelling \( t^2 + \frac{1}{t^2} \) from both sides: \[ -2 + 2x^2y^2 = 0 \] This simplifies to: \[ 2x^2y^2 = 2 \quad \Rightarrow \quad x^2y^2 = 1 \] ### Step 5: Differentiate the first equation Now we differentiate Equation 1 with respect to \( x \): \[ \frac{d}{dx}(x^2 + y^2) = \frac{d}{dx}(t - \frac{1}{t}) \] Using the chain rule: \[ 2x + 2y \frac{dy}{dx} = \frac{dt}{dx} + \frac{1}{t^2} \frac{dt}{dx} \] Factoring out \( \frac{dt}{dx} \): \[ 2x + 2y \frac{dy}{dx} = \frac{dt}{dx} \left(1 + \frac{1}{t^2}\right) \] ### Step 6: Express \( \frac{dt}{dx} \) From the relation \( x^2y^2 = 1 \), we can differentiate: \[ 2xy^2 \frac{dy}{dx} + 2x^2y = 0 \] This gives: \[ \frac{dy}{dx} = -\frac{y}{x} \] ### Step 7: Substitute \( \frac{dy}{dx} \) into the differentiated equation Substituting \( \frac{dy}{dx} \) back into the differentiated Equation 1: \[ 2x - 2y \frac{y}{x} = \frac{dt}{dx} \left(1 + \frac{1}{t^2}\right) \] This simplifies to: \[ 2x - \frac{2y^2}{x} = \frac{dt}{dx} \left(1 + \frac{1}{t^2}\right) \] ### Step 8: Solve for \( \frac{dy}{dx} \) Using \( x^2y^2 = 1 \), we can express \( y^2 \) in terms of \( x^2 \): \[ y^2 = \frac{1}{x^2} \] Substituting this into the equation gives us: \[ \frac{dy}{dx} = \frac{y}{x^3} \] ### Final Result Thus, the final expression for \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{y}{x^3} \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If x^(2)+y^(2)=t+(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) then (dy)/(dx)=

if x^(2)+y^(2)=t-(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) then x^(3)y(dy)/(dx)=?

If x^(2)+y^(2)=t-(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) then x^(3)y(dy)/(dx)=(a)0(b)1(c)-1(d) non of these

If x^(2)+y^(2)=(t+(1)/(t)) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)), then x^(3)y(dy)/(dx)=

If x^(2)+y^(2)=t-(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) then prove that (dy)/(dx)=(1)/(x^(3)y)

If x^(2)+y^(2)=t-1/t andx^(4)+y^(4)=t^(2)+(1)/(t^(2)), then prove that (dy)/(dx)=(1)/(x^(3)y).

If x^(2)+y^(2) = t +1//t and x^(4) +y^(4) = t^(2) + 1//t^(2) then (dy)/(dx) =______________

if x^(2)+y^(2)=t-(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) then prove that (dy)/(dx)=(1)/(x^(3)y)

NIKITA PUBLICATION-DIFFERENTIATION -MCQ
  1. If x =a ((1-t^(2))/( 1+ t^(2))),y =(2bt )/(1+t^(2) ),then (dy)/(dx) =

    Text Solution

    |

  2. If x=(2t)/(1+t^2),y=(1-t^2)/(1+t^2),t h e nfin d(dy)/(dx)a tt=2.

    Text Solution

    |

  3. If x^(2) +y^(2) =t-(1)/(t) andx^(4) +y^(4) =t^(2) +(1)/( t^(2)),then (...

    Text Solution

    |

  4. if x^2+y^2 = t - 1/t and x^4 + y^4 = t^2 + 1/t^2 then prove that dy/dx...

    Text Solution

    |

  5. If x=a cos theta ,y=asin theta ,then (dy)/(dx)=

    Text Solution

    |

  6. If xsin t,y =cos 2t ,then (dy)/(dx) =

    Text Solution

    |

  7. If x =a cot theta , y=b cosec theta ,then (dy)/(dx)=

    Text Solution

    |

  8. If x = a sec theta, y = b tan theta " then " (dy)/(dx) = ?

    Text Solution

    |

  9. If x =asec theta,y = atan theta , then" at" theta =(pi)/( 4) ,(dy)/(d...

    Text Solution

    |

  10. If x=acos^3t y =asin^3t then (dy)/(dx)=

    Text Solution

    |

  11. If x = a cos^(3) theta, y = a sin ^(3) theta then sqrt(1+((dy)/(dx))^(...

    Text Solution

    |

  12. If x=a cos ^(3) t,y =a sin ^(3)t,then " at" t = (pi)/(3) ,(dy)/(dx) ...

    Text Solution

    |

  13. If x=asec^3thetaa n dy=atan^3theta,fin d(dy)/(dx)a ttheta=pi/3dot

    Text Solution

    |

  14. If x= sec ^(2) theta, y =tan ^(3) theta ,then " at " theta (pi)/(3) ,...

    Text Solution

    |

  15. If x= 3tan theta ,y =3cosec theta, then " at " theta =(pi)/(6) ,(dy)/...

    Text Solution

    |

  16. If x= 2 cos^(4) (t+3) ,y=3sin ^(4) (t+3) ,then (dy)/(dx)=

    Text Solution

    |

  17. if x=a cos^(4) theta, y= a sin^(4) theta, "then" (dy)/(dx)"at" theta=(...

    Text Solution

    |

  18. If x=sin tcos 2t,y= cos tsin 2t ,then " at " t= (pi)/(4) ,(dy)/(dx)

    Text Solution

    |

  19. Ify=1- cos theta, x =1 - sin theta,then (dy)/(dx) " at " theta = (pi)/...

    Text Solution

    |

  20. If x =theta -sin theta ,y=1 -cos theta ,then " at " theta =(pi)/(2) ,...

    Text Solution

    |