Home
Class 12
MATHS
If x = log (1 + t^(2)) " and " y = t - t...

If `x = log (1 + t^(2)) " and " y = t - tan^(-1)t, " then" dy/dx ` is equal to

A

` 2sqrt (e^(x)- 1)`

B

` 2sqrt( 1-e^(x))`

C

` (sqrt( e^(x)- 1))/( 2)`

D

` (sqrt( 1-e^(x)))/( 2)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If x = t + (1)/(t) "and " y = t - (1)/(t) . "then" (dy)/(dx) is equal to

If y = t^(2) + t - 1 " then " (dy)/(dx) is equal to

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to

If x=e^(-t^(2)), y=tan^(-1)(2t+1) , then (dy)/(dx)=

If x=a(t-sin t),y=a(1-cos t), then (dy)/(dx) is equal to

If x=log(1+t^(2)),y=2t-2tan^(-1)t, then at t = 1(d^(2)y)/(dx^(2)) equals-