Home
Class 12
MATHS
If u= log (1+x^(2)) and v=x -tan ^(-1) ...

If ` u= log (1+x^(2)) and v=x -tan ^(-1) x,then(dy)/(dx) =`

A

` (2)/(x)`

B

` (-2)/(x) `

C

` (x)/(2)`

D

` (-x)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If v = log ( 1 + x^(2)) and u = x - tan^(-1) x then ,( du)/( dv) is equal to

If : y=(1+x^(2))*tan^(-1)x-x," then: "(dy)/(dx)=

If x = log (1 + t^(2)) " and " y = t - tan^(-1)t, " then" dy/dx is equal to

if y=x^(ln x)tan^(-1)x then find (dy)/(dx) at x=1

If log sqrt(x^(2)+y^(2))=tan^(-1)((y)/(x)),then(dy)/(dx) is

y=log tan((x)/(2))+sin^(-1)(cos x), then (dy)/(dx) is

If x=log(1+t^(2)),y=t-tan^(-1)t , show that (dy)/(dx)=sqrt(e^(x)-1)/(2)

If f^(1)(x)=(1)/(1+(ln x)^(2)) and y=f(e^(tan x)) then (dy)/(dx) is equal to

If u=tan^(-1){(sqrt(1+x^2)-1)/x} and v=2tan^(-1)x , then (d u)/(d v) is equal to......

Solve (1+x^(2))(dy)/(dx)=x+tan^(-1)x