Home
Class 12
MATHS
If f^(prime)(1)=-2sqrt(2)a n dg^(prime)(...

If `f^(prime)(1)=-2sqrt(2)a n dg^(prime)(sqrt(2))=4` , then the derivative of `f(tanx)` with respect to `g(secx)` at `x=pi/4,` is 1 (b) `-1` (c) 2 (d) 4

A

` 2sqrt2`

B

` sqrt2`

C

` (1)/(2sqrt2)`

D

` (1)/(sqrt(2))`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If f'(1)=-2sqrt(2) and g'(sqrt(2))=4, then the derivative of f(tan x) with respect to g(sec x) at x=(pi)/(4), is 1(b)-1(c)2(d)4

If : f'(1)=2" and "g'(sqrt(2))=4," then: derivative of "f(tanx)w.r.t.g(secx)" at "x=pi//4, is

The derivative of f(tan x)w*r.t.g(sec x) at x=(pi)/(4), where f'(1)=2 and g'(sqrt(2))=4

Find the derivative of f(tan x)w*r.tg(sec x) at x=(pi)/(4), where f'(1)=2 and g'(sqrt(2))=4

Find the derivative of f(tanx) w.r.t. g(secx) at x=pi/4 , where f^(prime)(1)=2 and g^(prime)(sqrt(2))=4 .

If f(x)=sqrt(4-x^(2))+sqrt(x^(2)-1), then the maximum value of (f(x))^(2) is

If f(1)=3,f'(1)=(1)/(3),g(1)=-4,g'(1)=(-8)/(3) then the derivative of sqrt((f(x))^(2)+(g(x))^(2)) w.r.to x at x=1 is a) (-29)/(15) b) (7)/(3) c) (31)/(15) d) (29)/(15)

If f(x) =(x-4)/(2sqrt(x)) , then f^(')(1) is equal to