Home
Class 12
MATHS
Derivative 5^(x) w.r.t. log 5 x is...

Derivative ` 5^(x) w.r.t. log _5 x ` is

A

` 5^(x) (log 5)`

B

` x5^(x) (log5)`

C

` 5^(x) (log 5)^(2)`

D

` x5^(x) (log 5)^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of \( 5^x \) with respect to \( \log_5 x \), we can follow these steps: ### Step 1: Define the Functions Let: - \( h = 5^x \) - \( g = \log_5 x \) We need to find \( \frac{dh}{dg} \). ### Step 2: Find \( \frac{dh}{dx} \) Using the formula for the derivative of an exponential function: \[ \frac{dh}{dx} = \frac{d}{dx}(5^x) = 5^x \log 5 \] ### Step 3: Find \( \frac{dg}{dx} \) Using the change of base formula for logarithms: \[ g = \log_5 x = \frac{\log_e x}{\log_e 5} \] Now, differentiate \( g \): \[ \frac{dg}{dx} = \frac{1}{\log 5} \cdot \frac{d}{dx}(\log_e x) = \frac{1}{\log 5} \cdot \frac{1}{x} \] Thus, \[ \frac{dg}{dx} = \frac{1}{x \log 5} \] ### Step 4: Find \( \frac{dh}{dg} \) Using the chain rule, we have: \[ \frac{dh}{dg} = \frac{dh}{dx} \cdot \frac{dx}{dg} = \frac{dh}{dx} \cdot \frac{1}{\frac{dg}{dx}} \] Substituting the values we found: \[ \frac{dh}{dg} = \frac{5^x \log 5}{\frac{1}{x \log 5}} = 5^x \log 5 \cdot \frac{x \log 5}{1} \] This simplifies to: \[ \frac{dh}{dg} = x \cdot 5^x \cdot (\log 5)^2 \] ### Final Answer Thus, the derivative \( \frac{d(5^x)}{d(\log_5 x)} \) is: \[ x \cdot 5^x \cdot (\log 5)^2 \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

Derivative of x ^(x) w.r.t xlogx is

Derivative of (log x) ^(x) w.r.t log x is

The derivative of y=x^(2^(x)) w.r.t. x is

Derivative of x^(2) w.r.t. x^(3) is

3^(x)" w.r.t."log_(3)x .

The derivative of x^(x) w.r.t. x is ___________.

Derivative of x^(2) w.r.t. x^(3) is "……."

What is the derivative of log _(x)5 w.r.t.log_(5)x?

Derivative of sinx^(3) w.r.t. x is :