Home
Class 12
MATHS
Derivative of x ^(x) w.r.t xlogx is...

Derivative of ` x ^(x)` w.r.t `xlogx ` is

A

`1+log x`

B

` x^(x) +log x `

C

` x^(x) `

D

` x^(x) -log x `

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of \( x^x \) with respect to \( x \log x \), we will follow these steps: ### Step 1: Define the Functions Let: - \( y_1 = x^x \) - \( y_2 = x \log x \) We need to find \( \frac{dy_1}{dy_2} \). ### Step 2: Differentiate \( y_1 \) To differentiate \( y_1 = x^x \), we can use logarithmic differentiation. Taking the natural logarithm of both sides: \[ \log y_1 = \log(x^x) = x \log x \] Now, differentiate both sides with respect to \( x \): \[ \frac{1}{y_1} \frac{dy_1}{dx} = \log x + x \cdot \frac{1}{x} = \log x + 1 \] Multiplying both sides by \( y_1 \): \[ \frac{dy_1}{dx} = y_1 (\log x + 1) = x^x (\log x + 1) \] ### Step 3: Differentiate \( y_2 \) Now, differentiate \( y_2 = x \log x \): \[ \frac{dy_2}{dx} = \log x + x \cdot \frac{1}{x} = \log x + 1 \] ### Step 4: Find \( \frac{dy_1}{dy_2} \) Now, we can find \( \frac{dy_1}{dy_2} \) using the chain rule: \[ \frac{dy_1}{dy_2} = \frac{dy_1/dx}{dy_2/dx} = \frac{x^x (\log x + 1)}{\log x + 1} \] ### Step 5: Simplify The \( \log x + 1 \) terms cancel out (assuming \( \log x + 1 \neq 0 \)): \[ \frac{dy_1}{dy_2} = x^x \] ### Final Answer Thus, the derivative of \( x^x \) with respect to \( x \log x \) is: \[ \frac{dy_1}{dy_2} = x^x \] ---
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

Derivative of (log x) ^(x) w.r.t log x is

Derivative of x^(2) w.r.t. x^(3) is

Derivative of sinx^(3) w.r.t. x is :

The derivative of y = x^2logx w.r.t. x is :

" Q."1" The derivative of x^(3)cos x w.r.t "x" is "

The derivative of y=x^(2^(x)) w.r.t. x is

Derivative 5^(x) w.r.t. log _5 x is

The derivative of x^(x) w.r.t. x is ___________.

If y=x-x^(2), then the derivative of y^(2) w.r.t x^(2) is

NIKITA PUBLICATION-DIFFERENTIATION -MCQ
  1. log(1+x^(2))"w.r.t."tan^(-1)x

    Text Solution

    |

  2. Darivative of tan ^(-1) (logt) w.r.t log (sec^(-1) t) is

    Text Solution

    |

  3. Derivative of x ^(x) w.r.t xlogx is

    Text Solution

    |

  4. Derivative of (log x) ^(x) w.r.t log x is

    Text Solution

    |

  5. Differentiate (cosx)^(sinx) w.r.t (sinx)^(cosx)

    Text Solution

    |

  6. cos^(-1)(sinx)w.r.t. tan^(-1)x

    Text Solution

    |

  7. tan^(-1)((x)/(sqrt(1-x^(2))))"w.r.t."sec^(-1)((1)/(2x^(2)-1))

    Text Solution

    |

  8. Darivative of tan ^(-1) ((x)/( sqrt(1-x^(2)))) w.r.t. sin ^(-1) (3x -...

    Text Solution

    |

  9. Differential coefficient of tan^(-1)sqrt((1-x^2)/(1+x^2)) w.r.t. cos^(...

    Text Solution

    |

  10. [" (v) Differentiate "log[(sqrt(1+x^(2))+x)/(sqrt(1+x^(2))-x)]" w.r.t....

    Text Solution

    |

  11. Derivative of tan ^(-1) ((a-x)/( 1+ax) ) w.r.t. sin ^(-1) (3x-4x^(3))...

    Text Solution

    |

  12. Derivative of tan ^(-1) ((sqrt( 1+x^(2))-1)/( x)) w.r.t. tan ^(-1) ((...

    Text Solution

    |

  13. Derivative of tan ^(-1) ((sqrt( 1+x^(2))-1)/( x)) w.r.cos ^(-1) sqrt(...

    Text Solution

    |

  14. Find the differential coefficient of : (tan^(-1)x)/(1+tan^(-1)x)" ...

    Text Solution

    |

  15. If x^2+6x y+y^2=10, Show that (d^2y)/(dx^2)=80/((3x+y)^3).

    Text Solution

    |

  16. If y= x ^(3) +5x^(2) -3x +10 ,then (d^(2)y)/(dx^(2))=

    Text Solution

    |

  17. If ax^(2)+2hxy+by^(2)=0,"show that "(d^(2)y)/(dx^(2))=0

    Text Solution

    |

  18. If a x^2+2h x y+b y^2=1,t h e n(d^(2y))/(dx^2) is (h^2-a b)/((h x+b y)...

    Text Solution

    |

  19. If x^my^n = (x + y)^(m+n), prove that (d^2y)/(dx^2)=0.

    Text Solution

    |

  20. If y=a x^(n+1)+b x^(-n) , then x^2(d^2y)/(dx^2)= n(n-1)y (b) n(n+1)y ...

    Text Solution

    |