Home
Class 12
MATHS
Derivative of tan ^(-1) ((sqrt( 1+x^(2)...

Derivative of ` tan ^(-1) ((sqrt( 1+x^(2))-1)/( x)) w.r.t. tan ^(-1) ((2x sqrt(1-x^(2)))/( 1-2x ^(2)))` is

A

` (-sqrt( 1-x^(2)))/( 4( 1+x^(2)))`

B

` (sqrt( 1-x^(2)))/( 4( 1+x^(2)))`

C

` (-sqrt( 1-x^(2)))/(1+x^(2))`

D

` ( sqrt( 1-x^(2)))/( 1+x^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of \( f(x) = \tan^{-1} \left( \frac{\sqrt{1+x^2} - 1}{x} \right) \) with respect to \( g(x) = \tan^{-1} \left( \frac{2x \sqrt{1-x^2}}{1-2x^2} \right) \), we will follow these steps: ### Step 1: Simplify \( f(x) \) We start with: \[ f(x) = \tan^{-1} \left( \frac{\sqrt{1+x^2} - 1}{x} \right) \] Let \( x = \tan(\theta) \). Then, we have: \[ \sqrt{1+x^2} = \sqrt{1+\tan^2(\theta)} = \sec(\theta) \] Thus, \[ f(x) = \tan^{-1} \left( \frac{\sec(\theta) - 1}{\tan(\theta)} \right) \] Now, we can rewrite the expression: \[ \frac{\sec(\theta) - 1}{\tan(\theta)} = \frac{\sec(\theta) - 1}{\frac{\sin(\theta)}{\cos(\theta)}} = \frac{(\sec(\theta) - 1) \cos(\theta)}{\sin(\theta)} \] This simplifies to: \[ f(x) = \tan^{-1} \left( \frac{1 - \cos(\theta)}{\sin(\theta)} \right) \] Using the half-angle identity, \( 1 - \cos(\theta) = 2\sin^2\left(\frac{\theta}{2}\right) \) and \( \sin(\theta) = 2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right) \): \[ f(x) = \tan^{-1} \left( \frac{2\sin^2\left(\frac{\theta}{2}\right)}{2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right)} \right) = \tan^{-1} \left( \tan\left(\frac{\theta}{2}\right) \right) = \frac{\theta}{2} \] Since \( \theta = \tan^{-1}(x) \): \[ f(x) = \frac{1}{2} \tan^{-1}(x) \] ### Step 2: Differentiate \( f(x) \) Now, we differentiate \( f(x) \): \[ f'(x) = \frac{1}{2} \cdot \frac{1}{1+x^2} \] ### Step 3: Simplify \( g(x) \) Next, we simplify \( g(x) \): \[ g(x) = \tan^{-1} \left( \frac{2x \sqrt{1-x^2}}{1-2x^2} \right) \] Let \( x = \sin(\theta) \). Then: \[ g(x) = \tan^{-1} \left( \frac{2\sin(\theta)\cos(\theta)}{\cos^2(\theta)} \right) = \tan^{-1} \left( \tan(2\theta) \right) = 2\theta \] Thus, \[ g(x) = 2 \sin^{-1}(x) \] ### Step 4: Differentiate \( g(x) \) Now we differentiate \( g(x) \): \[ g'(x) = 2 \cdot \frac{1}{\sqrt{1-x^2}} \] ### Step 5: Find \( \frac{f'(x)}{g'(x)} \) Now we find the derivative of \( f \) with respect to \( g \): \[ \frac{f'(x)}{g'(x)} = \frac{\frac{1}{2(1+x^2)}}{2 \cdot \frac{1}{\sqrt{1-x^2}}} = \frac{\sqrt{1-x^2}}{4(1+x^2)} \] ### Final Answer Thus, the derivative of \( f(x) \) with respect to \( g(x) \) is: \[ \frac{\sqrt{1-x^2}}{4(1+x^2)} \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

Derivative of tan^(-1)((sqrt(1+x^(2))-1)/(x))w.r.t.tan^(-1)x is

The derivative of tan^(-1)((sqrt(1+x^(2))-1)/(x)) writ.tan^(-1)x is

The derivative of tan^(-1)((sqrt(1+x^(2))-1)/(x)) with respect to tan^(-1)((2x sqrt(1-x^(2)))/(1-2x^(2))) at x=0 is (1)/(8)(b)(1)/(4)(c)(1)/(2)(d)1

Differentiate tan^(-1)((sqrt(1+x^(2))+1)/(x))" w.r.t. "tan^(-1)((2xsqrt(1-x^(2)))/(1-2x^(2))) at x = 0.

Derivative of tan ^(-1) ((sqrt( 1+x^(2))-1)/( x)) w.r.cos ^(-1) sqrt((1+sqrt( 1+x^(2)))/( 2sqrt(1+x^(2)))) is

the derivation of tan ^(-1)((sqrt(1+x^(2))-1)/(x)) with respect to tan^(-1)((2x sqrt(1-x^(2)))/(1-2x^(2)))

Derivative of tan^(-1)((sqrt(1+x^(2))-1)/(x)) w.r.t. sin^(-1)((2x)/(1+x^(2))) is

Differentiate tan^(-1)((sqrt(1+x^(2))-1)/(x)) w.r.t. tan^(-1)x.

NIKITA PUBLICATION-DIFFERENTIATION -MCQ
  1. [" (v) Differentiate "log[(sqrt(1+x^(2))+x)/(sqrt(1+x^(2))-x)]" w.r.t....

    Text Solution

    |

  2. Derivative of tan ^(-1) ((a-x)/( 1+ax) ) w.r.t. sin ^(-1) (3x-4x^(3))...

    Text Solution

    |

  3. Derivative of tan ^(-1) ((sqrt( 1+x^(2))-1)/( x)) w.r.t. tan ^(-1) ((...

    Text Solution

    |

  4. Derivative of tan ^(-1) ((sqrt( 1+x^(2))-1)/( x)) w.r.cos ^(-1) sqrt(...

    Text Solution

    |

  5. Find the differential coefficient of : (tan^(-1)x)/(1+tan^(-1)x)" ...

    Text Solution

    |

  6. If x^2+6x y+y^2=10, Show that (d^2y)/(dx^2)=80/((3x+y)^3).

    Text Solution

    |

  7. If y= x ^(3) +5x^(2) -3x +10 ,then (d^(2)y)/(dx^(2))=

    Text Solution

    |

  8. If ax^(2)+2hxy+by^(2)=0,"show that "(d^(2)y)/(dx^(2))=0

    Text Solution

    |

  9. If a x^2+2h x y+b y^2=1,t h e n(d^(2y))/(dx^2) is (h^2-a b)/((h x+b y)...

    Text Solution

    |

  10. If x^my^n = (x + y)^(m+n), prove that (d^2y)/(dx^2)=0.

    Text Solution

    |

  11. If y=a x^(n+1)+b x^(-n) , then x^2(d^2y)/(dx^2)= n(n-1)y (b) n(n+1)y ...

    Text Solution

    |

  12. If y^2=a x^2+b x+c , then y^3(d^2y)/(dx^2) is (a) a constant (b) a fun...

    Text Solution

    |

  13. if (x-a)^2+(y-b)^2=c^2 then {1+((dy)/(dx))^2}/{(d^2y)/(dx^2)} =?

    Text Solution

    |

  14. If f(x) =1 + nx+ (n(n-1))/(2) x^(2) + (n(n-1)(n-2))/(6) x^(3) + ...+...

    Text Solution

    |

  15. If y=5" cos"x-3" sin"x, prove that (d^(2)y)/(dx^(2))+y=0.

    Text Solution

    |

  16. If y=sec x -tan x ,then (d^(2)y)/(dx^(2)) =

    Text Solution

    |

  17. If y=cos ^(2) ((3x) /( 2))-sin ^(2) ((3x)/( 2) ),then (d^(2)y)/( dx^(...

    Text Solution

    |

  18. If y= sin x sqrt ( cos x ) ,then (d^(2)y)/(dx^(2)) =

    Text Solution

    |

  19. If y=cos (log x) ,then (d^(2)y)/(dx^(2))=

    Text Solution

    |

  20. The number of values of b , for which in an acute triangle A B C , the...

    Text Solution

    |