Home
Class 12
MATHS
Derivative of tan ^(-1) ((sqrt( 1+x^(2)...

Derivative of ` tan ^(-1) ((sqrt( 1+x^(2))-1)/( x)) w.r.cos ^(-1) sqrt((1+sqrt( 1+x^(2)))/( 2sqrt(1+x^(2))))` is

A

1

B

-1

C

2

D

-2

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \tan^{-1} \left( \frac{\sqrt{1+x^2}-1}{x} \right) \) with respect to \( z = \cos^{-1} \left( \sqrt{\frac{1+\sqrt{1+x^2}}{2\sqrt{1+x^2}}} \right) \), we will follow these steps: ### Step 1: Define the Functions Let: - \( f(x) = \tan^{-1} \left( \frac{\sqrt{1+x^2}-1}{x} \right) \) - \( g(x) = \cos^{-1} \left( \sqrt{\frac{1+\sqrt{1+x^2}}{2\sqrt{1+x^2}}} \right) \) ### Step 2: Find the Derivative \( \frac{dy}{dz} \) Using the chain rule, we have: \[ \frac{dy}{dz} = \frac{f'(x)}{g'(x)} \] ### Step 3: Find \( f'(x) \) To find \( f'(x) \), we first simplify \( f(x) \): 1. Substitute \( x = \tan(\theta) \): \[ f(x) = \tan^{-1} \left( \frac{\sqrt{1+\tan^2(\theta)} - 1}{\tan(\theta)} \right) = \tan^{-1} \left( \frac{\sec(\theta) - 1}{\tan(\theta)} \right) \] 2. Rewrite using sine and cosine: \[ f(x) = \tan^{-1} \left( \frac{\frac{1}{\cos(\theta)} - 1}{\frac{\sin(\theta)}{\cos(\theta)}} \right) = \tan^{-1} \left( \frac{1 - \cos(\theta)}{\sin(\theta)} \right) \] 3. Using the half-angle identity: \[ 1 - \cos(\theta) = 2\sin^2\left(\frac{\theta}{2}\right) \quad \text{and} \quad \sin(\theta) = 2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right) \] 4. Thus, we have: \[ f(x) = \tan^{-1} \left( \frac{2\sin^2\left(\frac{\theta}{2}\right)}{2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right)} \right) = \tan^{-1} \left( \tan\left(\frac{\theta}{2}\right) \right) = \frac{\theta}{2} \] 5. Since \( \theta = \tan^{-1}(x) \): \[ f(x) = \frac{1}{2} \tan^{-1}(x) \] 6. Differentiate: \[ f'(x) = \frac{1}{2} \cdot \frac{1}{1+x^2} \] ### Step 4: Find \( g'(x) \) Next, we simplify \( g(x) \): 1. Substitute \( x = \tan(\theta) \): \[ g(x) = \cos^{-1} \left( \sqrt{\frac{1+\sec(\theta)}{2\sec(\theta)}} \right) \] 2. Simplify: \[ g(x) = \cos^{-1} \left( \sqrt{\frac{2}{2\sec(\theta)}} \right) = \cos^{-1} \left( \frac{1}{\sqrt{2}} \right) = \frac{\theta}{2} \] 3. Differentiate: \[ g'(x) = \frac{1}{2} \cdot \frac{1}{\sqrt{1 - \left(\frac{1}{\sqrt{2}}\right)^2}} = \frac{1}{2} \cdot \frac{1}{\sqrt{\frac{1}{2}}} = \frac{1}{2} \cdot \sqrt{2} \] ### Step 5: Calculate \( \frac{dy}{dz} \) Now substituting back into our derivative: \[ \frac{dy}{dz} = \frac{f'(x)}{g'(x)} = \frac{\frac{1}{2(1+x^2)}}{\frac{1}{2}\sqrt{2}} = \frac{1}{\sqrt{2}(1+x^2)} \] ### Final Result Thus, the derivative \( \frac{dy}{dz} \) is: \[ \frac{1}{\sqrt{2}(1+x^2)} \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

cos^(-1)sqrt((sqrt(1+x^(2))+1)/(2sqrt(1+x^(2))))

Derivative of tan ^(-1) ((sqrt( 1+x^(2))-1)/( x)) w.r.t. tan ^(-1) ((2x sqrt(1-x^(2)))/( 1-2x ^(2))) is

Derivative of tan^(-1)((sqrt(1+x^(2))-1)/(x))w.r.t.tan^(-1)x is

Derivative of tan^(-1)((sqrt(1+x^(2))-1)/(x)) w.r.t. sin^(-1)((2x)/(1+x^(2))) is

Differential coefficient tan^(-1)((sqrt(1-x^(2)-1))/(x)) with respect to cos^(-1)sqrt((1+sqrt(1+x^(2)))/(2sqrt(1-x^(2))))

the derivation of tan ^(-1)((sqrt(1+x^(2))-1)/(x)) with respect to tan^(-1)((2x sqrt(1-x^(2)))/(1-2x^(2)))

Differentiate tan^(-1)((sqrt(1+x^(2))-1)/(x)) w.r.t. tan^(-1)x.

Derivative of tan^(-1){(x)/(1+sqrt(1-x^(2)))}w.r.t.sin^(-1) is

Derivative of tan^(-1)sqrt((1-x)/(1+x))=w.r.t.cos^(-1)x is

NIKITA PUBLICATION-DIFFERENTIATION -MCQ
  1. Derivative of tan ^(-1) ((a-x)/( 1+ax) ) w.r.t. sin ^(-1) (3x-4x^(3))...

    Text Solution

    |

  2. Derivative of tan ^(-1) ((sqrt( 1+x^(2))-1)/( x)) w.r.t. tan ^(-1) ((...

    Text Solution

    |

  3. Derivative of tan ^(-1) ((sqrt( 1+x^(2))-1)/( x)) w.r.cos ^(-1) sqrt(...

    Text Solution

    |

  4. Find the differential coefficient of : (tan^(-1)x)/(1+tan^(-1)x)" ...

    Text Solution

    |

  5. If x^2+6x y+y^2=10, Show that (d^2y)/(dx^2)=80/((3x+y)^3).

    Text Solution

    |

  6. If y= x ^(3) +5x^(2) -3x +10 ,then (d^(2)y)/(dx^(2))=

    Text Solution

    |

  7. If ax^(2)+2hxy+by^(2)=0,"show that "(d^(2)y)/(dx^(2))=0

    Text Solution

    |

  8. If a x^2+2h x y+b y^2=1,t h e n(d^(2y))/(dx^2) is (h^2-a b)/((h x+b y)...

    Text Solution

    |

  9. If x^my^n = (x + y)^(m+n), prove that (d^2y)/(dx^2)=0.

    Text Solution

    |

  10. If y=a x^(n+1)+b x^(-n) , then x^2(d^2y)/(dx^2)= n(n-1)y (b) n(n+1)y ...

    Text Solution

    |

  11. If y^2=a x^2+b x+c , then y^3(d^2y)/(dx^2) is (a) a constant (b) a fun...

    Text Solution

    |

  12. if (x-a)^2+(y-b)^2=c^2 then {1+((dy)/(dx))^2}/{(d^2y)/(dx^2)} =?

    Text Solution

    |

  13. If f(x) =1 + nx+ (n(n-1))/(2) x^(2) + (n(n-1)(n-2))/(6) x^(3) + ...+...

    Text Solution

    |

  14. If y=5" cos"x-3" sin"x, prove that (d^(2)y)/(dx^(2))+y=0.

    Text Solution

    |

  15. If y=sec x -tan x ,then (d^(2)y)/(dx^(2)) =

    Text Solution

    |

  16. If y=cos ^(2) ((3x) /( 2))-sin ^(2) ((3x)/( 2) ),then (d^(2)y)/( dx^(...

    Text Solution

    |

  17. If y= sin x sqrt ( cos x ) ,then (d^(2)y)/(dx^(2)) =

    Text Solution

    |

  18. If y=cos (log x) ,then (d^(2)y)/(dx^(2))=

    Text Solution

    |

  19. The number of values of b , for which in an acute triangle A B C , the...

    Text Solution

    |

  20. If y=a^(x) b^(2x-1) ,then (d^(2)y)/(dx^(2))=

    Text Solution

    |