Home
Class 12
MATHS
If y=sec x -tan x ,then (d^(2)y)/(dx^(2...

If ` y=sec x -tan x ,then (d^(2)y)/(dx^(2))` =

A

` (1)/(4) sec ^(2) ((pi)/(4)- ( x)/(2) ) tan ((pi)/(4)-( x)/(2))`

B

` (-1)/(4) sec ^(2) ((pi)/(4)- ( x)/(2) ) tan ((pi)/(4)-( x)/(2))`

C

` (1)/(2) sec ^(2) ((pi)/(4)- ( x)/(2) ) tan ((pi)/(4)-( x)/(2))`

D

` (-1)/(2) sec ^(2) ((pi)/(4)- ( x)/(2) ) tan ((pi)/(4)-( x)/(2))`

Text Solution

Verified by Experts

The correct Answer is:
C
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y=x^(3)+tan x then find (d^(2)y)/(dx^(2))

If y=x^(3)+tan x, show that (d^(2)y)/(dx^(2))=6x+2sec^(2)tan x

Knowledge Check

  • If y= e^(2x) tan x ,then ( d^(2)y)/(dx^(2))=

    A
    ` e^(2x)(1+tan x)( 2+tan x +tan ^(2)x)`
    B
    ` 2e^(2x)(1+tan x)( 2+tan x +tan ^(2)x)`
    C
    ` e^(2x)(1+tan x)( 1+tan x +tan ^(2)x)`
    D
    ` 2e^(2x)(1+tan x)( 1+tan x +tan ^(2)x)`
  • If y= sec ( tan sqrt x ) ,then (dy)/(dx) =

    A
    `(tan sqrt xsec ^(2) sqrtx sec (tan sqrtx ))/( 2sqrtx) `
    B
    ` (sec^(2)sqrt ( x)sec (tan sqrt x ) tan (tan sqrt x))/( 2sqrtx ) `
    C
    ` (sec ^(2) sqrt x sec ( tan sqrt x) tan (tan sqrt x))/( sqrt x) `
    D
    ` (tan sqrtx sec ^(2) sqrtx sec (tan sqrtx ))/( sqrtx) `
  • If y sec x+ tan x +x^2 y=0 , then (dy)/(dx) =

    A
    `(2xy+sec^2x+ysecxtanx)/(x^2+secx)`
    B
    `-(2xy+sec^2x+secxtanx)/(x^2+secx)`
    C
    `-(2xy+sec^2x+ysecxtanx)/(x^2+secx)`
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    If y=sec x-tanx ,show that (cosx)(d^(2)y)/(dx^(2))=y^(2).

    If x=3tan t and y=3sec t then find (d^(2)y)/(dx^(2)) at x=(pi)/(4)( a) 3( b) (1)/(6sqrt(2))(c)1(d)(1)/(6)

    If y=tan X+sec x, prove that (d^(2)y)/(dx^(2))=(cos x)/((1-sin x)^(2))

    If y=tan x+sec x, prove that (d^(2)y)/(dx^(2))=(cos x)/((1-sin x)^(2))

    If y=(2x)^(sec x) +(tan x)^(x) ,then(dy)/(dx)=