Home
Class 12
MATHS
If y=(tan^(-1)x)^2, then (x^2+1)^2 (d^2y...

If `y=(tan^(-1)x)^2`, then `(x^2+1)^2 (d^2y)/(dx^2) + 2x(x^2+1) dy/dx=`

A

` (2( 1+2xtan ^(-1) x))/( (1+x^(2) )^(2) )`

B

` (2( 1-2xtan ^(-1) x))/( (1+x^(2) )^(2) )`

C

` (2( 1+ xtan ^(-1) x))/( (1+x^(2) )^(2) )`

D

` (2( 1-xtan ^(-1) x))/( (1+x^(2) )^(2) )`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y=(tan^(-1)x)^(2), then (x^(2)+1)^(2)(d^(2)y)/(dx^(2))+2x(x^(2)+1)(dy)/(dx)=

IF y= ( tan ^(-1) x)^(2) " then " (x^(2) +1)^(2) (d^(2)y)/(dx^(2))+2x(x^(2)+1)(dy)/(dx)=

If y=(tan^(-1)x^(2)), show that (x^(2)+1)^(2)(d^(2)y)/(dx^(2))+2x(x^(2)+1)(dy)/(dx)=2

If y= e ^(mcos ^(-1)x) ,then (1-x^(2) ) (d^(2)y)/(dx^(2)) -x(dy)/(dx)=

If y=cos (mcos ^(-1) x ),then (1-x^(2)) (d^(2)y)/(dx^(2) )-x( dy)/(dx)=

If y=(sin^(-1)x)^2 then prove that (1-x^(2))(d^2y)/(dx^2)-x(dy)/(dx)-2=0 .

y=(cot^(-1)x)^(2), thenshowthat (x^(2)+1)^(2)(d^(2)y)/(dx^(2))+2x(x^(2)+1)(dy)/(dx)

If y=sin (msin ^(-1) x),then (1-x^(2))(d^(2)y)/(dx^(2))-x( dy)/(dx)=

If y = (tan^(-1))^(2) , show that (1+x^(2))(d^(2)y)/(dx^(2)) + 2x(1+x^(2))(dy)/(dx) - 2 = 0