Home
Class 12
MATHS
"If "y= sin x +e^(x)," then "(d^(2)x)/(d...

`"If "y= sin x +e^(x)," then "(d^(2)x)/(dy^(2))=`

A

` (1)/( -sin x+e^(x))`

B

` (sin x-e^(x))/( (cos x +e^(x))^(3))`

C

` (sin x-e^(x))/( (cos x +e^(x))^(2))`

D

` (sin x +e^(x))/( (cos x+e^(x))^3)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y=sinx+e^(x)," then "(d^(2)x)/(dy^(2)) equals

If y=x+e^(x), find (d^(2)x)/(dy^(2))

If y=x+e^(x), then (d^(2)x)/(dy^(2)) is equal to

If y=x+e ^(x), then ((d^(2)y)/(dy ^(2)))_(x = ln 2) is :

If y = e^(x) sin x then (d^(2)y)/(dx^(2)) =

If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/(dx)=- ky, where k =

If y= x^(2) e^(x) ,then ( d^(2)y)/(dx^(2)) -(dy)/(dx) =

If y=sin(log_(e)x) , then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx) is equal to

If y=x^(2)e^(x),"show that "(d^(2)y)/(dx^(2))-(dy)/(dx)-2(x+1)e^(x)=0