Home
Class 12
MATHS
If x^(2)+y^(2) =1,then (d^(2)y)/(dx^(2))...

If `x^(2)+y^(2) =1,then (d^(2)y)/(dx^(2))` =

A

` (-1)/(y^(3))`

B

` (1)/(3)`

C

` (-y)/(x^(2))`

D

` (y)/(x^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the second derivative \(\frac{d^2y}{dx^2}\) given the equation \(x^2 + y^2 = 1\), we will follow these steps: ### Step 1: Differentiate the equation implicitly Starting with the equation: \[ x^2 + y^2 = 1 \] We differentiate both sides with respect to \(x\): \[ \frac{d}{dx}(x^2) + \frac{d}{dx}(y^2) = \frac{d}{dx}(1) \] This gives us: \[ 2x + 2y\frac{dy}{dx} = 0 \] ### Step 2: Solve for \(\frac{dy}{dx}\) Rearranging the equation from Step 1: \[ 2y\frac{dy}{dx} = -2x \] Dividing both sides by \(2y\): \[ \frac{dy}{dx} = -\frac{x}{y} \] ### Step 3: Differentiate \(\frac{dy}{dx}\) to find \(\frac{d^2y}{dx^2}\) Now we differentiate \(\frac{dy}{dx}\) again: \[ \frac{d^2y}{dx^2} = \frac{d}{dx}\left(-\frac{x}{y}\right) \] Using the quotient rule: \[ \frac{d^2y}{dx^2} = \frac{y \cdot \frac{d}{dx}(-x) - (-x) \cdot \frac{dy}{dx}}{y^2} \] Calculating \(\frac{d}{dx}(-x)\): \[ \frac{d}{dx}(-x) = -1 \] Substituting this into our equation: \[ \frac{d^2y}{dx^2} = \frac{y(-1) - (-x)\left(-\frac{x}{y}\right)}{y^2} \] This simplifies to: \[ \frac{d^2y}{dx^2} = \frac{-y - \frac{x^2}{y}}{y^2} \] ### Step 4: Combine the terms Combining the terms in the numerator: \[ \frac{d^2y}{dx^2} = \frac{-y^2 - x^2}{y^3} \] Since from the original equation \(x^2 + y^2 = 1\), we have: \[ -y^2 - x^2 = -1 \] Thus, substituting this back in: \[ \frac{d^2y}{dx^2} = \frac{-1}{y^3} \] ### Final Result Therefore, the second derivative is: \[ \frac{d^2y}{dx^2} = -\frac{1}{y^3} \] ---
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If (a^(2))/(x^(2))+(b^(2))/(y^(2))=1, then (d^(2)y)/(dx^(2))=

If x=2at ^(2),y =4at ,then (d^(2)y)/(dx^(2) )=

If x^(2)/a^(2) + y^(2)/b^(2)=1 , then (d^(2)y)/(dx^(2)) is

If x=at^(2),y=2at then (d^(2)y)/(dx^(2)) is equal to

If y =x^(2) then (d^(2)y)/(dx^(2)) is………….

If y=x^(x)*b^(2x-1)," then: "(d^(2)y)/(dx^(2))=

If ((dy)/(dx))^(2)+y^(2)=1(2a)/(y)," then "(d^(2)y)/(dx^(2))+y=

If y=|x-x^(2)|, then find (d^(2)y)/(dx^(2))

If e^(y)(x+1)=1, show that (d^(2)y)/(dx^(2))=((dy)/(dx))^(2) If y=sin(2sin^(-1)x), show that ((1-x^(2))d^(2y))/(dx^(2))=x(dy)/(dx)-4y